1
|
Wu Z, Liu D, Deng Y, Pang R, Wang J, Qin T, Yang Z, Qiu R. Remediation of Cr(VI)-contaminated soil by CS/PPy coupling with Microbacterium sp. YL3. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134580. [PMID: 38865829 DOI: 10.1016/j.jhazmat.2024.134580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/14/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
In this research, a new material, chitosan/polypyrrole (CS/PPy), was synthesized and linked with the Cr(VI)-reducing bacterial strain YL3 to treat Cr(VI)-polluted soil. The findings demonstrated that the synergistic application of strain YL3 and CS/PPy achieved the greatest reduction (99.6 %). During the remediation process, CS/PPy served as a mass-storage and sustained release agent in the soil, which initially decreased the toxic effects of high concentrations of Cr(VI) on strain YL3, thereby enhancing the Cr(VI) reduction efficiency of strain YL3. These combined effects significantly mitigated Cr(VI) stress in the soil and restored enzyme activities. Furthermore, wheat growth in the treated soil also significantly improved. High-throughput sequencing of the microorganisms in the treated soil revealed that CS/PPy was not only effective at removing Cr(VI) but also at preserving the original microbial diversity of the soil. This suggests that the combined treatment using strain YL3 and CS/PPy could rehabilitate Cr(VI)-contaminated soil, positioning CS/PPy as a promising composite material for future bioremediation efforts in Cr(VI)-contaminated soils.
Collapse
Affiliation(s)
- Zhiguo Wu
- College of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin 300457, China; College of Oceanography and Environment, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dan Liu
- College of Oceanography and Environment, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ying Deng
- College of Oceanography and Environment, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Runyi Pang
- College of Oceanography and Environment, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jinjin Wang
- College of Oceanography and Environment, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tian Qin
- College of Oceanography and Environment, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zongzheng Yang
- College of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin 300457, China; College of Oceanography and Environment, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Zhang J, Tang K, Fang R, Liu J, Liu M, Ma J, Wang H, Ding M, Wang X, Song Y, Yang D. Nanotechnological strategies to increase the oxygen content of the tumor. Front Pharmacol 2023; 14:1140362. [PMID: 36969866 PMCID: PMC10034070 DOI: 10.3389/fphar.2023.1140362] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Hypoxia is a negative prognostic indicator of solid tumors, which not only changes the survival state of tumors and increases their invasiveness but also remarkably reduces the sensitivity of tumors to treatments such as radiotherapy, chemotherapy and photodynamic therapy. Thus, developing therapeutic strategies to alleviate tumor hypoxia has recently been considered an extremely valuable target in oncology. In this review, nanotechnological strategies to elevate oxygen levels in tumor therapy in recent years are summarized, including (I) improving the hypoxic tumor microenvironment, (II) oxygen delivery to hypoxic tumors, and (III) oxygen generation in hypoxic tumors. Finally, the challenges and prospects of these nanotechnological strategies for alleviating tumor hypoxia are presented.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Kaiyuan Tang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Runqi Fang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Jiaming Liu
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Ming Liu
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Jiayi Ma
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Hui Wang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu, China
| | - Meng Ding
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Meng Ding, ; Xiaoxiao Wang, ; Dongliang Yang,
| | - Xiaoxiao Wang
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, China
- *Correspondence: Meng Ding, ; Xiaoxiao Wang, ; Dongliang Yang,
| | - Yanni Song
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, China
- *Correspondence: Meng Ding, ; Xiaoxiao Wang, ; Dongliang Yang,
| |
Collapse
|
3
|
Yan T, Alimu G, Zhu L, Fan H, Zhang L, Du Z, Ma R, Chen S, Alifu N, Zhang X. PpIX/IR-820 Dual-Modal Therapeutic Agents for Enhanced PDT/PTT Synergistic Therapy in Cervical Cancer. ACS OMEGA 2022; 7:44643-44656. [PMID: 36530282 PMCID: PMC9753516 DOI: 10.1021/acsomega.2c02977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/10/2022] [Indexed: 05/10/2023]
Abstract
High treatment accuracy is the key to efficient cancer treatment. Photodynamic therapy (PDT) and photothermal therapy (PTT) are two kinds of popular, precise treatment methods. The combination of photodynamic and photothermal therapy (PDT/PTT) can greatly enhance the precise therapeutic efficacy. In this work, protoporphyrin IX (PpIX) was selected as the PDT agent (photosensitizer), and new indocyanine green (IR-820) was selected as the PTT agent. Further, the two kinds of theranostic agents were encapsulated by biological-membrane-compatible liposomes to form PpIX-IR-820@Lipo nanoparticles (NPs), a new kind of PDT/PTT agent. The PpIX-IR-820@Lipo NPs exhibited good water solubility, a spherical shape, and high fluorescence peak emission in the near-infrared spectral region (700-900 nm, NIR). The cellular toxicity of PpIX-IR-820@Lipo NPs for human cervical cancer cells (HeLa) and human cervical epithelial cells (H8) was detected by the CCK-8 method, and low cytotoxicity was observed for the PpIX-IR-820@Lipo NPs. Then, the excellent cellular uptake of PpIX-IR-820@Lipo NPs was confirmed by laser scanning confocal microscopy. Moreover, the PDT/PTT property of PpIX-IR-820@Lipo NPs was illustrated via 2',7'-dichlorofluorescin diacetate (DCFH-DA) and annexin V-fluorescein isothiocyanate (annexin V-FITC), as indicator probes. The PDT/PTT synergistic efficiency of PpIX-IR-820@Lipo NPs on HeLa cells was verified, exhibiting a high efficiency of 70.5%. Thus, the novel theranostic PpIX-IR-820@Lipo NPs can be used as a promising PDT/PTT synergistic theranostic nanoplatform in future cervical cancer treatment.
Collapse
Affiliation(s)
- Ting Yan
- Department
of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, No.567 Shangde North Road, Ürümqi 830054, China
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| | - Gulinigaer Alimu
- Department
of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, No.567 Shangde North Road, Ürümqi 830054, China
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| | - Lijun Zhu
- Department
of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, No.567 Shangde North Road, Ürümqi 830054, China
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| | - Huimin Fan
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| | - Linxue Zhang
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| | - Zhong Du
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia/Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi 830054, China
| | - Rong Ma
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia/Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi 830054, China
| | - Shuang Chen
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia/Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi 830054, China
| | - Nuernisha Alifu
- Department
of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, No.567 Shangde North Road, Ürümqi 830054, China
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| | - Xueliang Zhang
- Department
of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University, No.567 Shangde North Road, Ürümqi 830054, China
- State
Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence
Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi 830054, China
| |
Collapse
|
4
|
Wu H, Liu J, Chen Z, Lin P, Ou W, Wang Z, Xiao W, Chen Y, Cao D. Mechanism and Application of Surface-Charged Ferrite Nanozyme-Based Biosensor toward Colorimetric Detection of l-Cysteine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8266-8279. [PMID: 35749646 DOI: 10.1021/acs.langmuir.2c00657] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Peroxidase-like nanozymes with robust catalytic capacity and detection specificity have been proposed as substitutes to natural peroxidases in biochemical sensing. However, the catalytic activity enhancement, detection mechanism, and application of nanozyme-based biosensors toward l-cysteine (l-Cys) detection still remain significant challenges. In this work, a doped ferrite nanozyme with well-defined structure and surface charges is fabricated by a two-step method of continuous flow coprecipitation and high-temperature annealing. The resulted ferrite nanozyme possesses an average size of 54.5 nm and a zeta-potential of 6.45 mV. A high-performance biosensor is manufactured based on the peroxidase-like catalytic feature of the doped ferrite. The ferrite nanozyme can oxidize the 3,3',5,5'-tetramethylbenzidine (TMB) with the assistance of H2O2 because of the instinctive capacity to decompose H2O2 into ·OH. The Michaelis-Menten constants (0.0911 mM for TMB, 0.140 mM for H2O2) of the ferrite nanozyme are significantly smaller than those of horseradish peroxidase. A reliable colorimetric method is established to selectively analyze l-Cys via a facile mixing-and-detecting methodology. The detection limit and linear range are 0.119 μM and 0.2-20 μM, respectively. Taking the merits of the ferrite nanozyme-based biosensors, the l-Cys level in the human serum can be qualitatively detected. It can be anticipated that the surface-charged ferrite nanozyme shows great application prospects in the fields of bioanalytical chemistry and point-of-care testing.
Collapse
Affiliation(s)
- Hongjiao Wu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Jun Liu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
| | - Zhuoyu Chen
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
| | - Pengcheng Lin
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
| | - Wentao Ou
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
| | - Zian Wang
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
| | - Wei Xiao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology Panyu District, Guangzhou, 510006, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| |
Collapse
|
5
|
Wu F, Zhang Q, Sun B, Chu X, Zhang M, She Z, Li Z, Zhou N, Wang J, Li A. MoO 3-x nanosheets-based platform for single NIR laser induced efficient PDT/PTT of cancer. J Control Release 2021; 338:46-55. [PMID: 34391835 DOI: 10.1016/j.jconrel.2021.08.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/08/2021] [Accepted: 08/11/2021] [Indexed: 01/10/2023]
Abstract
Traditional combination therapy of photodynamic therapy (PDT) and photothermal therapy (PTT) is limited in the field of clinical cancer therapy due to activation by light with separate wavelengths, insufficient O2 supply, antioxidant ability of glutathione (GSH) in tumor cell, and low penetration depth of light. Here, a multifunctional nanoplatform composed of MoO3-x nanosheets, Ag nanocubes, and MnO2 nanoparticles was developed to overcome these drawbacks. For this nanoplatform, hyperthermia and reactive oxygen species (ROS) were simultaneously generated under single 808 nm near-infrared (NIR) light irradiation. Once this nanoplatform accumulated in the tumor region, GSH was depleted by MnO2 and intracellular H2O2 was catalyzed by MnO2 to produce O2 to relieve hypoxia. Ultrasound (US) imaging confirmed in-situ O2 generation. Magnetic resonance (MR) imaging, photoacoustic (PA) imaging, and fluorescence imaging were used to monitor in vivo biodistribution of nanomaterials. This provides a paradigm to rationally design a single NIR laser induced multimodal imaging-guided efficient PDT/PTT cancer strategy.
Collapse
Affiliation(s)
- Fan Wu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China; College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Qicheng Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Baohong Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiaohong Chu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Ming Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhangcai She
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Zihan Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Jianxiu Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| | - Ao Li
- Department of Ultrasound, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China.
| |
Collapse
|
6
|
Li B, Niu X, Xie M, Luo F, Huang X, You Z. Tumor-Targeting Multifunctional Nanoprobe for Enhanced Photothermal/Photodynamic Therapy of Liver Cancer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8064-8072. [PMID: 34189915 DOI: 10.1021/acs.langmuir.0c03578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Numerous researchers have committed to the development of combined therapy strategies for tumors, since their use in the treatment of tumors has more ideal therapeutic outcomes. In the study, we designed and prepared gold nanostars with CD147 modified on the surface and then efficiently loaded a photosensitive drug IR820 to construct a multifunctional nanoprobe. Due to the protection effect of gold, the nanoprobe has oxygen/heat energy generation capability and can also efficiently deliver the loaded drugs inside the tumor cells. Moreover, the nanoprobe has excellent photothermal/photodynamic therapeutic outcomes. The observation by photoacoustic real-time imaging validated the outstanding tumor-targeting characteristics of our nanoprobe. Finally, in the in vivo treatment experiment, the nanoprobe achieved ideal tumor-suppressive effects after the photothermal/photodynamic therapy. In summary, the findings of this experiment are useful in the development of new combined tumor therapy strategies based on nanomaterials.
Collapse
Affiliation(s)
- Bei Li
- Department of Biliary Surgery, West China Hospital of Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu 610041, Sichuan, China
| | - Xiaoya Niu
- Department of Biliary Surgery, West China Hospital of Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu 610041, Sichuan, China
| | - Maodi Xie
- West Chia-Washington Mitochondria and Metabolism Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Fan Luo
- Department of Biliary Surgery, West China Hospital of Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu 610041, Sichuan, China
| | - Xiuyi Huang
- Department of Biliary Surgery, West China Hospital of Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu 610041, Sichuan, China
| | - Zhen You
- Department of Biliary Surgery, West China Hospital of Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu 610041, Sichuan, China
| |
Collapse
|
7
|
Li W, Hu J, Wang J, Tang W, Yang W, Liu Y, Li R, Liu H. Polydopamine‐mediated polypyrrole/doxorubicin nanocomplex for chemotherapy‐enhanced photothermal therapy in both NIR‐I and NIR‐II biowindows against tumor cells. J Appl Polym Sci 2020. [DOI: 10.1002/app.49239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wenchao Li
- Key Laboratory of Luminescent and Real‐Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy Southwest University Chongqing China
| | - Jie Hu
- Key Laboratory of Luminescent and Real‐Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy Southwest University Chongqing China
| | - Jingjing Wang
- Key Laboratory of Luminescent and Real‐Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy Southwest University Chongqing China
| | - Wei Tang
- Key Laboratory of Luminescent and Real‐Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy Southwest University Chongqing China
| | - Wenting Yang
- Key Laboratory of Luminescent and Real‐Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy Southwest University Chongqing China
| | - Yanqing Liu
- Key Laboratory of Luminescent and Real‐Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy Southwest University Chongqing China
| | - Rui Li
- Key Laboratory of Luminescent and Real‐Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy Southwest University Chongqing China
| | - Hui Liu
- Key Laboratory of Luminescent and Real‐Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy Southwest University Chongqing China
| |
Collapse
|
8
|
Wu H, Wang W, Zhang Z, Li J, Zhao J, Liu Y, Wu C, Huang M, Li Y, Wang S. Synthesis of a Clay-Based Nanoagent for Photonanomedicine. ACS APPLIED MATERIALS & INTERFACES 2020; 12:390-399. [PMID: 31800211 DOI: 10.1021/acsami.9b19930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photo-induced cancer therapies, mainly including photothermal therapy (PTT) and photodynamic therapy (PDT), have attracted numerous attentions owing to the high selectivity, convenience, and few side effects. However, single PTT usually requires high laser power density, and single PDT usually needs a high photosensitizer dosage. Herein, a kind of composite nanocarrier based on clay (laponite)-polypyrrole (LP) nanodisks was synthesized via the in situ polymerization of pyrrole in the interlayer space of laponite. LP composite nanodisks were then coated with polyvinylpyrrolidone (PVP) to form the LP-PVP (LPP) composite nanodisks which show an excellent colloidal stability and in vitro and in vivo biocompatibility. The interlayer space of LPP can be further used for the loading of Chlorin e6 (Ce6), with an ultrahigh loading capacity of about 89.2%. Furthermore, the LPP nanocarrier can enhance the PDT effect of Ce6 under the irradiation of a 660 nm laser, through enhancing its solubility and cellular uptake amount. Besides, it was found that LPP nanodisks exhibit a more outstanding photothermal performance under a 980 nm near-infrared laser (NIR) than a 808 nm NIR laser, with the photothermal conversion efficiency of 45.7 and 27.7%, respectively. The in vitro and in vivo tumor therapy results evidently confirm that the Ce6-loaded LPP nanodisks have a combined tumor PTT and PDT effect, which can significantly suppress the tumor malignant proliferation.
Collapse
Affiliation(s)
- Huan Wu
- College of Science , University of Shanghai for Science and Technology , No. 334 Jungong Road , Shanghai 200093 , China
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Weifan Wang
- Department of Allergy and Immunology, Shanghai Children's Medical Center, School of Medicine , Shanghai Jiao Tong University , No. 1678 Dongfang Road , Shanghai 200127 , China
| | - Zhilun Zhang
- College of Science , University of Shanghai for Science and Technology , No. 334 Jungong Road , Shanghai 200093 , China
| | - Jinfeng Li
- College of Science , University of Shanghai for Science and Technology , No. 334 Jungong Road , Shanghai 200093 , China
| | - Jiayan Zhao
- College of Science , University of Shanghai for Science and Technology , No. 334 Jungong Road , Shanghai 200093 , China
| | - Yiyun Liu
- College of Science , University of Shanghai for Science and Technology , No. 334 Jungong Road , Shanghai 200093 , China
| | - Chenyao Wu
- College of Science , University of Shanghai for Science and Technology , No. 334 Jungong Road , Shanghai 200093 , China
| | - Mingxian Huang
- College of Science , University of Shanghai for Science and Technology , No. 334 Jungong Road , Shanghai 200093 , China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Shige Wang
- College of Science , University of Shanghai for Science and Technology , No. 334 Jungong Road , Shanghai 200093 , China
| |
Collapse
|
9
|
Leitão MM, Alves CG, de Melo-Diogo D, Lima-Sousa R, Moreira AF, Correia IJ. Sulfobetaine methacrylate-functionalized graphene oxide-IR780 nanohybrids aimed at improving breast cancer phototherapy. RSC Adv 2020; 10:38621-38630. [PMID: 35517523 PMCID: PMC9057306 DOI: 10.1039/d0ra07508f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/14/2020] [Indexed: 01/23/2023] Open
Abstract
The application of Graphene Oxide (GO) in cancer photothermal therapy is hindered by its lack of colloidal stability in biologically relevant media and modest Near Infrared (NIR) absorption. In this regard, the colloidal stability of GO has been improved by functionalizing its surface with poly(ethylene glycol) (PEG), which may not be optimal due to the recent reports on PEG immunogenicity. On the other hand, the chemical reduction of GO using hydrazine hydrate has been applied to enhance its photothermal capacity, despite decreasing its cytocompatibility. In this work GO was functionalized with an amphiphilic polymer containing [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) brushes and was loaded with IR780, for the first time, aiming to improve its colloidal stability and phototherapeutic capacity. The attained results revealed that the SBMA-functionalized GO displays a suitable size distribution, neutral surface charge and adequate cytocompatibility. Furthermore, the SBMA-functionalized GO exhibited an improved colloidal stability in biologically relevant media, while its non-SBMA functionalized equivalent promptly precipitated under the same conditions. By loading IR780 into the SBMA-functionalized GO, its NIR absorption increased by 2.7-fold, leading to a 1.2 times higher photothermal heating. In in vitro cell studies, the combination of SBMA-functionalized GO with NIR light only reduced breast cancer cells' viability to 73%. In stark contrast, by combining IR780 loaded SBMA-functionalized GO and NIR radiation, the cancer cells' viability decreased to 20%, hence confirming the potential of this nanomaterial for cancer photothermal therapy. IR780 loaded SBMA-coated GO displayed an improved colloidal stability in biologically relevant media and an enhanced photothermal capacity.![]()
Collapse
Affiliation(s)
- Miguel M. Leitão
- CICS-UBI – Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Cátia G. Alves
- CICS-UBI – Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI – Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Rita Lima-Sousa
- CICS-UBI – Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - André F. Moreira
- CICS-UBI – Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Ilídio J. Correia
- CICS-UBI – Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
- CIEPQPF – Departamento de Engenharia Química
| |
Collapse
|