1
|
Silva F, Veiga F, Paulo Jorge Rodrigues S, Cardoso C, Cláudia Paiva-Santos A. COSMO Models for the Pharmaceutical Development of Parenteral Drug Formulations. Eur J Pharm Biopharm 2023; 187:156-165. [PMID: 37120066 DOI: 10.1016/j.ejpb.2023.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/31/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
The aqueous solubility of active pharmaceutical ingredients is one of the most important features to be considered during the development of parenteral formulations in the pharmaceutical industry. Computational modelling has become in the last years an integral part of pharmaceutical development. In this context, ab initio computational models, such as COnductor-like Screening MOdel (COSMO), have been proposed as promising tools for the prediction of results without the effective use of resources. Nevertheless, despite the clear evaluation of computational resources, some authors had not achieved satisfying results and new calculations and algorithms have been proposed over the years to improve the outcomes. In the development and production of aqueous parenteral formulations, the solubility of Active Pharmaceutical Ingredients (APIs) in an aqueous and biocompatible vehicle is a decisive step. This work aims to study the hypothesis that COSMO models could be useful in the development of new parenteral formulations, mainly aqueous ones.
Collapse
Affiliation(s)
- Fernando Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Sérgio Paulo Jorge Rodrigues
- Coimbra Chemistry Centre, Chemistry Department, Faculty of Sciences and Technology of the University of Coimbra of the University of Coimbra, Coimbra, Portugal
| | - Catarina Cardoso
- Laboratórios Basi, Parque Industrial Manuel Lourenço Ferreira, lote 15, 3450-232 Mortágua, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Piasentin N, Lian G, Cai Q. In Silico Prediction of Stratum Corneum Partition Coefficients via COSMOmic and Molecular Dynamics Simulations. J Phys Chem B 2023; 127:2719-2728. [PMID: 36930176 PMCID: PMC10068742 DOI: 10.1021/acs.jpcb.2c08566] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Stratum corneum (SC) is the main barrier of human skin where the inter-corneocytes lipids provide the main pathway for transdermal permeation of functional actives of skin care and health. Molecular dynamics (MD) has been increasingly used to simulate the SC lipid bilayer structure so that the barrier property and its affecting factors can be elucidated. Among reported MD simulation studies, solute partition in the SC lipids, an important parameter affecting SC permeability, has received limited attention. In this work, we combine MD simulation with COSMOmic to predict the partition coefficients of dermatologically relevant solutes in SC lipid bilayer. Firstly, we run MD simulations to obtain equilibrated SC lipid bilayers with different lipid types, compositions, and structures. Then, the simulated SC lipid bilayer structures are fed to COSMOmic to calculate the partition coefficients of the solutes. The results show that lipid types and bilayer geometries play a minor role in the predicted partition coefficients. For the more lipophilic solutes, the predicted results of solute partition in SC lipid bilayers agree well with reported experimental values of solute partition in extracted SC lipids. For the more hydrophilic molecules, there is a systematical underprediction. Nevertheless, the MD/COSMOmic approach correctly reproduces the phenomenological correlation between the SC lipid/water partition coefficients and the octanol/water partition coefficients. Overall, the results show that the MD/COSMOmic approach is a fast and valid method for predicting solute partitioning into SC lipids and hence supporting the assessment of percutaneous absorption of skin care ingredients, dermatological drugs as well as environmental pollutants.
Collapse
Affiliation(s)
- Nicola Piasentin
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU27XH, U.K.,Unilever R&D Colworth, Unilever, Sharnbrook MK441LQ, U.K
| | - Guoping Lian
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU27XH, U.K.,Unilever R&D Colworth, Unilever, Sharnbrook MK441LQ, U.K
| | - Qiong Cai
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU27XH, U.K
| |
Collapse
|
3
|
Turchi M, Karcz AP, Andersson MP. First-principles prediction of critical micellar concentrations for ionic and nonionic surfactants. J Colloid Interface Sci 2022; 606:618-627. [PMID: 34416454 DOI: 10.1016/j.jcis.2021.08.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 02/01/2023]
Abstract
The concentration of surfactant in solution for which micelles start to form, also known as critical micelle concentration is a key property in formulation design. The critical micelle concentration can be determined experimentally with a tensiometer by measuring the surface tension of a concentration series. In analogy with experiments, in-silico predictions can be achieved through interfacial tension calculations. We present a newly developed method, which employs first principles-based interfacial tension calculations rooted in COSMO-RS theory, for the prediction of the critical micelle concentration of a set of nonionic, cationic, anionic, and zwitterionic surfactants in water. Our approach consists of a combination of two prediction strategies for modelling two different phenomena involving the removal of the surfactant hydrophobic tail from contact with water. The two strategies are based on regular micelle formation and thermodynamic phase separation of the surfactant from water and both are required to take into account a wide range of polarity in the hydrophilic headgroup. Our method yields accurate predictions for the critical micellar concentration, within one log unit from experiments, for a wide range of surfactant types and introduces possibilities for first-principles based prediction of formulation properties for more complex compositions.
Collapse
Affiliation(s)
- M Turchi
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - A P Karcz
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - M P Andersson
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
4
|
Yu T, Olsson E, Lian G, Liu L, Huo F, Zhang X, Cai Q. Prediction of the Liquid-Liquid Extraction Properties of Imidazolium-Based Ionic Liquids for the Extraction of Aromatics from Aliphatics. J Chem Inf Model 2021; 61:3376-3385. [PMID: 34161083 DOI: 10.1021/acs.jcim.1c00212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Liquid-liquid extraction (LLE) is an important technique to separate aromatics from aliphatics since these compounds have very similar boiling points and cannot be separated by distillation. Ionic liquids (ILs) are considered as potential extractants to extract aromatics from aliphatics. In this paper, molecular dynamics (MD) simulations were used to predict the extraction property (i.e., capacity and selectivity) of ILs for the LLE of aromatics from aliphatics. The extraction properties of seven different ILs including [C2mim][Tf2N], [C2mim][TFO], [C2mim][SCN], [C2mim][DCA], [C2mim][TCM], [C4mim][Tf2N], and [C8mim][Tf2N] were investigated. Results show that ILs with shorter alkyl chain cations and [Tf2N]- anion exhibit better extraction efficiency than other ILs, which is in agreement with previously reported experimental data on the extraction of toluene from aliphatics and further validated the reliability of the proposed model. The binding energies between ILs and organic molecules were calculated by the density functional theory, which help explain the different extraction behaviors of different ILs. The symmetry-adapted perturbation theory analysis was performed to further understand the interaction mechanisms between ILs and organics. Our study shows that the [Tf2N]- anion also has the best extraction capability for heavier aromatics (o-xylene, m-xylene, and p-xylene) from common aliphatics (heptane and octane). The MD modeling approach can be a low-cost in silico tool for the high-throughput fast screening of ILs for the LLE of aromatics from aliphatics.
Collapse
Affiliation(s)
- Tianhao Yu
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom.,Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Emilia Olsson
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Guoping Lian
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom.,Unilever Research Colworth, Colworth Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Lei Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Huo
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangping Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Qiong Cai
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| |
Collapse
|
5
|
Coleman L, Lian G, Glavin S, Sorrell I, Chen T. In Silico Simulation of Simultaneous Percutaneous Absorption and Xenobiotic Metabolism: Model Development and a Case Study on Aromatic Amines. Pharm Res 2020; 37:241. [DOI: 10.1007/s11095-020-02967-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022]
|
6
|
Huang C, Su X, Zhang D, Gu X, Liu R, Zhu H. Co-MOF nanocatalysts of tunable shape and size for selective aerobic oxidation of toluene. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Turchi M, Kognole AA, Kumar A, Cai Q, Lian G, MacKerell AD. Predicting Partition Coefficients of Neutral and Charged Solutes in the Mixed SLES-Fatty Acid Micellar System. J Phys Chem B 2020; 124:1653-1664. [PMID: 31955574 DOI: 10.1021/acs.jpcb.9b11199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sodium laureth sulfate (SLES) and fatty acids are common ingredients in many cosmetic products. Understanding how neutral and charged fatty acid compounds partition between micellar and water phases is crucial to achieve the optimal design of the product formulation. In this paper, we first study the formation of mixed SLES and fatty acid micelles using molecular dynamics (MD) simulations. Micelle/water partition coefficients of neutral and charged fatty acids are then calculated using COSMOmic as well as a MD approach based on the potential of mean force (PMF) calculations performed using umbrella sampling (US). The combined US/PMF approach was performed with both the additive, non-polarizable CHARMM general force field (CGenFF) and the classical Drude polarizable force field. The partition coefficients for the neutral solutes are shown to be accurately calculated with the COSMOmic and additive CGenFF US/PMF approaches, while only the US/PMF approach with the Drude polarizable force field accurately calculated the experimental partition coefficient of the charged solute. These results indicate the utility of the Drude polarizable force field as a tool for the rational development of mixed micelles.
Collapse
Affiliation(s)
- Mattia Turchi
- Unilever Research Colworth, Colworth Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.,Department of Chemical and Process Engineering, University of Surrey, Guildford GU27XH, U.K
| | - Abhishek A Kognole
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Anmol Kumar
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Qiong Cai
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU27XH, U.K
| | - Guoping Lian
- Unilever Research Colworth, Colworth Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.,Department of Chemical and Process Engineering, University of Surrey, Guildford GU27XH, U.K
| | - Alexander D MacKerell
- University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|