1
|
Caselli L, Conti L, De Santis I, Berti D. Small-angle X-ray and neutron scattering applied to lipid-based nanoparticles: Recent advancements across different length scales. Adv Colloid Interface Sci 2024; 327:103156. [PMID: 38643519 DOI: 10.1016/j.cis.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Lipid-based nanoparticles (LNPs), ranging from nanovesicles to non-lamellar assemblies, have gained significant attention in recent years, as versatile carriers for delivering drugs, vaccines, and nutrients. Small-angle scattering methods, employing X-rays (SAXS) or neutrons (SANS), represent unique tools to unveil structure, dynamics, and interactions of such particles on different length scales, spanning from the nano to the molecular scale. This review explores the state-of-the-art on scattering methods applied to unveil the structure of lipid-based nanoparticles and their interactions with drugs and bioactive molecules, to inform their rational design and formulation for medical applications. We will focus on complementary information accessible with X-rays or neutrons, ranging from insights on the structure and colloidal processes at a nanoscale level (SAXS) to details on the lipid organization and molecular interactions of LNPs (SANS). In addition, we will review new opportunities offered by Time-resolved (TR)-SAXS and -SANS for the investigation of dynamic processes involving LNPs. These span from real-time monitoring of LNPs structural evolution in response to endogenous or external stimuli (TR-SANS), to the investigation of the kinetics of lipid diffusion and exchange upon interaction with biomolecules (TR-SANS). Finally, we will spotlight novel combinations of SAXS and SANS with complementary on-line techniques, recently enabled at Large Scale Facilities for X-rays and neutrons. This emerging technology enables synchronized multi-method investigation, offering exciting opportunities for the simultaneous characterization of the structure and chemical or mechanical properties of LNPs.
Collapse
Affiliation(s)
- Lucrezia Caselli
- Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden.
| | - Laura Conti
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Ilaria De Santis
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Debora Berti
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy; Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
2
|
Papadopoulou P, van der Pol R, van Hilten N, van Os WL, Pattipeiluhu R, Arias-Alpizar G, Knol RA, Noteborn W, Moradi MA, Ferraz MJ, Aerts JMFG, Sommerdijk N, Campbell F, Risselada HJ, Sevink GJA, Kros A. Phase-Separated Lipid-Based Nanoparticles: Selective Behavior at the Nano-Bio Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310872. [PMID: 37988682 DOI: 10.1002/adma.202310872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Indexed: 11/23/2023]
Abstract
The membrane-protein interface on lipid-based nanoparticles influences their in vivo behavior. Better understanding may evolve current drug delivery methods toward effective targeted nanomedicine. Previously, the cell-selective accumulation of a liposome formulation in vivo is demonstrated, through the recognition of lipid phase-separation by triglyceride lipases. This exemplified how liposome morphology and composition can determine nanoparticle-protein interactions. Here, the lipase-induced compositional and morphological changes of phase-separated liposomes-which bear a lipid droplet in their bilayer- are investigated, and the mechanism upon which lipases recognize and bind to the particles is unravelled. The selective lipolytic degradation of the phase-separated lipid droplet is observed, while nanoparticle integrity remains intact. Next, the Tryptophan-rich loop of the lipase is identified as the region with which the enzymes bind to the particles. This preferential binding is due to lipid packing defects induced on the liposome surface by phase separation. In parallel, the existing knowledge that phase separation leads to in vivo selectivity, is utilized to generate phase-separated mRNA-LNPs that target cell-subsets in zebrafish embryos, with subsequent mRNA delivery and protein expression. Together, these findings can expand the current knowledge on selective nanoparticle-protein communications and in vivo behavior, aspects that will assist to gain control of lipid-based nanoparticles.
Collapse
Affiliation(s)
- Panagiota Papadopoulou
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Rianne van der Pol
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Niek van Hilten
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Winant L van Os
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Roy Pattipeiluhu
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Gabriela Arias-Alpizar
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Renzo Aron Knol
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Willem Noteborn
- NeCEN, Leiden University, Einsteinweg 55, Leiden, 2333 AL, The Netherlands
| | - Mohammad-Amin Moradi
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P. O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Maria Joao Ferraz
- Department of Medical Biochemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | | | - Nico Sommerdijk
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P. O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Department of Medical BioSciences and Radboud Technology Center - Electron Microscopy, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Frederick Campbell
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Herre Jelger Risselada
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
- Department of Physics, Technical University Dortmund, 44221, Dortmund, Germany
| | - Geert Jan Agur Sevink
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P. O. Box 9502, Leiden, 2300 RA, The Netherlands
| |
Collapse
|
3
|
Li Y, Han R, Feng J, Li J, Luo X. Phospholipid Bilayer Integrated with Multifunctional Peptide for Ultralow-Fouling Electrochemical Detection of HER2 in Human Serum. Anal Chem 2024; 96:531-537. [PMID: 38115190 DOI: 10.1021/acs.analchem.3c04701] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Electrochemical biosensing devices face challenges of severe nonspecific adsorption in complex biological matrices for the detection of biomarkers, and thus, there is a significant need for sensitive and antifouling biosensors. Herein, a sensitive electrochemical biosensor with antifouling and antiprotease hydrolysis ability was constructed for the detection of human epidermal growth factor receptor 2 (HER2) by integrating multifunctional branched peptides with distearoylphosphatidylethanolamine-poly(ethylene glycol) (DSPE-PEG) self-assembled bilayer. The peptide was designed to possess antifouling, antiprotease hydrolysis, and HER2 recognizing capabilities. Molecular dynamics simulations demonstrated that the DSPE was able to effectively self-assemble into a bilayer, and the water contact angle and electrochemical experiments verified that the combination of peptide with the DSPE-PEG bilayer was conducive to enhancing the hydrophilicity and antifouling performance of the modified surface. The constructed HER2 biosensor exhibited excellent antifouling and antiprotease hydrolysis capabilities, and it possessed a linear range of 1.0 pg mL-1 to 1.0 μg mL-1, and a limit of detection of 0.24 pg mL-1. In addition, the biosensor was able to detect HER2 in real human serum samples without significant biofouling, and the assaying results were highly consistent with those measured by the enzyme-linked immunosorbent assay (ELISA), indicating the promising potential of the antifouling biosensor for clinical diagnosis.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rui Han
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiahui Feng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jialu Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
4
|
Vancuylenberg G, Sadeghpour A, Tyler AII, Rappolt M. From angular to round: in depth interfacial analysis of binary phosphatidylethanolamine mixtures in the inverse hexagonal phase. SOFT MATTER 2023; 19:8519-8530. [PMID: 37889160 DOI: 10.1039/d3sm01029e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Packing stress in the lipidic inverse hexagonal HII phase arises from the necessity of the ideally cylinder-shaped micelles to fill out the hexagonally-shaped Wigner-Seitz unit cell. Thus, hydrocarbon chains stretch towards the corners and compress in the direction of the flat side of the hexagonal unit cell. Additionally, the lipid/water interface deviates from being perfectly circular. To study this packing frustration in greater detail, we have doped 1-palmitoyl-2-oleoyl-sn-phosphatidylethanolamine (POPE) with increasing molar concentrations of 1,2-palmitoyl-sn-phosphatidylethanolamine (DPPE: 0 to 15 mol%). Due to its effectively longer hydrophobic tails, DPPE tends to aggregate in the corner regions of the unit cell, and thus, increases the circularity of the lipid/water interface. From small angle X-ray diffraction (SAXD) we determined electron density maps. Using those, we analysed the size, shape and homogeneity of the lipid/water interface as well as that of the methyl trough region. At 6 and 9 mol% DPPE the nanotubular water core most closely resembles a circle; further to this, in comparison to its neighbouring concentrations, the 9 mol% DPPE sample has the smallest water core area and smallest number of lipids per circumference, best alleviating the packing stress. Finally, a three-water layer model was applied, discerning headgroup, perturbed and free water, demonstrating that the hexagonal phase is most stable in the direction of the flat faces (compression zones) and least stable towards the vertices of the unit cell (decompression zones).
Collapse
Affiliation(s)
| | - Amin Sadeghpour
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Arwen I I Tyler
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Michael Rappolt
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
5
|
Song HC, Xie CY, Kong Q, Wei L, Wang XT. Daylight ultraviolet B radiation ruptured the cell membrane, promoted nucleotide metabolism and inhibited energy metabolism in the plasma of Pacific oyster. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160729. [PMID: 36496017 DOI: 10.1016/j.scitotenv.2022.160729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The increasing and intensifying ultraviolet B (UVB) radiation in sunlight is an environmental threat to aquatic ecosystems, potentially affecting the entire life cycle of wild or aquacultural Pacific oyster Crassostrea gigas with photoreception. Due to its complex composition, plasma is an important biological specimen for investigating the degree of disturbance from its steady state caused by the external environment in the open-pipe-type hemolymph of mollusks. We performed a multi-omic analysis of C. gigas plasma exposed to daylight UVB radiation. Hub differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were identified using the functional classification of Clusters of Orthologous Groups of proteins (COGs) through the protein-protein interaction (PPI)-based maximal clique centrality (MCC) algorithm. Our results summarize three types of UVB influences (disruption of the cell membrane, promotion of nucleotide metabolism, and inhibition of energy metabolism) on C. gigas based on transcriptomic, proteomic, and metabolomic analyses. The associated hub DEGs, DEPs (e.g., nucleoside diphosphate kinase, malate dehydrogenase, and hydroxyacyl-coenzyme A dehydrogenase), and metabolites (e.g., uridine, adenine, deoxyguanosine, guanosine, and xylitol) in the plasma were identified as biomarkers of mollusk response to UVB radiation, and could be used to evaluate the influence of environmental UVB on mollusks in future studies.
Collapse
Affiliation(s)
- Hong-Ce Song
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Chao-Yi Xie
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Qing Kong
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China.
| | - Xiao-Tong Wang
- School of Agriculture, Ludong University, Yantai City, Shandong Province 264025, China.
| |
Collapse
|
6
|
Du R, Li X, Ma YH, Luo Y, Wang C, Ma Q, Lu X. Exploring Interfacial Hydrolysis of Artificial Neutral Lipid Monolayer and Bilayer Catalyzed by Phospholipase C. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8104-8113. [PMID: 35749224 DOI: 10.1021/acs.langmuir.2c00995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phospholipase C (PLC) represents an important type of enzymes with the feature of hydrolyzing phospholipids at the position of the glycerophosphate bond, among which PLC extracted from Bacillus cereus (BC-PLC) has been extensively studied owing to its similarity to hitherto poorly characterized mammalian analogues. This study focuses on investigating the interfacial hydrolysis mechanism of phosphatidylcholine (PC) monolayer and bilayer membranes catalyzed by BC-PLC using sum frequency generation vibrational spectroscopy (SFG-VS) and laser scanning confocal microscopy (LSCM). We found that, upon interfacial hydrolysis, BC-PLC was adsorbed onto the lipid interface and catalyzed the lipolysis with no net orientation, as evidenced by the silent amide I band, indicating that ordered PLC alignment was not a prerequisite for the enzyme activity, which is very different from what we have reported for phospholipase A1 (PLA1) and phospholipase A2 (PLA2) [Kai, S. Phys. Chem. Chem. Phys. 2018, 20(1), 63-67; Wang, F. Langmuir 2019, 35(39), 12831-12838; Zhang, F. Langmuir 2020, 36(11), 2946-2953]. For the PC monolayer, one of the two hydrolysates, phosphocholine, desorbed from the interface into the aqueous phase, while the other one, diacylglycerol (DG), stayed well packed with high order at the interface. For the PC bilayer, phosphocholine dispersed into the aqueous phase too, similar to the monolayer case; however, DG, presumably formed clusters with the unreacted lipid substrates and desorbed from the interface. With respect to both the monolayer and bilayer cases, mechanistic schematics were presented to illustrate the different interfacial hydrolysis processes. Therefore, this model experimental study in vitro provides significant molecular-level insights and contributes necessary knowledge to reveal the lipolysis kinetics with respect to PLC and lipid membranes with monolayer and bilayer structures.
Collapse
Affiliation(s)
- Rongrong Du
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Xu Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Yong-Hao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Yongsheng Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Chu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Qian Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, P. R. China
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
7
|
The influence of lipid digestion on the fate of orally administered drug delivery vehicles. Biochem Soc Trans 2021; 49:1749-1761. [PMID: 34431506 PMCID: PMC8421046 DOI: 10.1042/bst20210168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/29/2022]
Abstract
This review will focus on orally administered lipid-based drug delivery vehicles and specifically the influence of lipid digestion on the structure of the carrier lipids and their entrained drug cargoes. Digestion of the formulation lipids, which are typically apolar triglycerides, generates amphiphilic monoglycerides and fatty acids that can self-assemble into a diverse array of liquid crystalline structures. Tracking the dynamic changes in self-assembly of the lipid digestion products during digestion has recently been made possible using synchrotron-based small angle X-ray scattering. The influence of lipid chain length and degree of unsaturation on the resulting lipid structuring will be described in the context of the critical packing parameter theory. The chemical and structural transformation of the formulation lipids can also have a dramatic impact on the physical state of drugs co-administered with the formulation. It is often assumed that the best strategy for drug development is to maximise drug solubility in the undigested formulation lipids and to incorporate additives to maintain drug solubility during digestion. However, it is possible to improve drug absorption using lipid digestion in cases where the solubility of the dosed drug or one of its polymorphic forms is greater in the digested lipids. Three different fates for drugs administered with digestible lipid-based formulations will be discussed: (1) where the drug is more soluble in the undigested formulation lipids; (2) where the drug undergoes a polymorphic transformation during lipid digestion; and (3) where the drug is more soluble in the digested formulation lipids.
Collapse
|
8
|
Pham AC, Clulow AJ, Boyd BJ. Formation of Self-Assembled Mesophases During Lipid Digestion. Front Cell Dev Biol 2021; 9:657886. [PMID: 34178984 PMCID: PMC8231029 DOI: 10.3389/fcell.2021.657886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/05/2021] [Indexed: 11/27/2022] Open
Abstract
Lipids play an important role in regulating bodily functions and providing a source of energy. Lipids enter the body primarily in the form of triglycerides in our diet. The gastrointestinal digestion of certain types of lipids has been shown to promote the self-assembly of lipid digestion products into highly ordered colloidal structures. The formation of these ordered colloidal structures, which often possess well-recognized liquid crystalline morphologies (or “mesophases”), is currently understood to impact the way nutrients are transported in the gut and absorbed. The formation of these liquid crystalline structures has also been of interest within the field of drug delivery, as it enables the encapsulation or solubilization of poorly water-soluble drugs in the aqueous environment of the gut enabling a means of absorption. This review summarizes the evidence for structure formation during the digestion of different lipid systems associated with foods, the techniques used to characterize them and provides areas of focus for advancing our understanding of this emerging field.
Collapse
Affiliation(s)
- Anna C Pham
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| |
Collapse
|
9
|
Salvati Manni L, Duss M, Assenza S, Boyd BJ, Landau EM, Fong WK. Enzymatic hydrolysis of monoacylglycerols and their cyclopropanated derivatives: Molecular structure and nanostructure determine the rate of digestion. J Colloid Interface Sci 2021; 588:767-775. [PMID: 33309146 DOI: 10.1016/j.jcis.2020.11.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 12/31/2022]
Abstract
Colloidal lipidic particles with different space groups and geometries (mesosomes) are employed in the development of new nanosystems for the oral delivery of drugs and nutrients. Understanding of the enzymatic digestion rate of these particles is key to the development of novel formulations. In this work, the molecular structure of the lipids has been systematically tuned to examine the effect on their self-assembly and digestion rate. The kinetic and phase changes during the lipase-catalysed hydrolysis of mesosomes formed by four synthetic cyclopropanated lipids and their cis-unsaturated analogues were monitored by dynamic small angle X-ray scattering and acid/base titration. It was established that both the phase behaviour and kinetics of the hydrolysis are greatly affected by small changes in the molecular structure of the lipid as well as by the internal nanostructure of the colloidal particles.
Collapse
Affiliation(s)
- Livia Salvati Manni
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; School of Chemistry and University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia.
| | - Michael Duss
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada
| | - Salvatore Assenza
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain; Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ehud M Landau
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Wye-Khay Fong
- Discipline of Chemistry, School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, NSW, Australia.
| |
Collapse
|
10
|
Angelova A, Angelov B, Drechsler M, Bizien T, Gorshkova YE, Deng Y. Plasmalogen-Based Liquid Crystalline Multiphase Structures Involving Docosapentaenoyl Derivatives Inspired by Biological Cubic Membranes. Front Cell Dev Biol 2021; 9:617984. [PMID: 33644054 PMCID: PMC7905036 DOI: 10.3389/fcell.2021.617984] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/04/2021] [Indexed: 12/29/2022] Open
Abstract
Structural properties of plasmenyl-glycerophospholipids (plasmalogens) have been scarcely studied for plasmalogens with long polyunsaturated fatty acid (PUFA) chains, despite of their significance for the organization and functions of the cellular membranes. Elaboration of supramolecular assemblies involving PUFA-chain plasmalogens in nanostructured mixtures with lyotropic lipids may accelerate the development of nanomedicines for certain severe pathologies (e.g., peroxisomal disorders, cardiometabolic impairments, and neurodegenerative Alzheimer's and Parkinson's diseases). Here, we investigate the spontaneous self-assembly of bioinspired, custom-produced docosapentaenoyl (DPA) plasmenyl (ether) and ester phospholipids in aqueous environment (pH 7) by synchrotron small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM). A coexistence of a liquid crystalline primitive cubic Im3m phase and an inverted hexagonal (HII) phase is observed for the DPA-ethanolamine plasmalogen (C16:1p-22:5n6 PE) derivative. A double-diamond cubic Pn3m phase is formed in mixed assemblies of the phosphoethanolamine plasmalogen (C16:1p-22:5n6 PE) and monoolein (MO), whereas a coexistence of cubic and lamellar liquid crystalline phases is established for the DPA-plasmenyl phosphocholine (C16:1p-22:5n6 PC)/MO mixture at ambient temperature. The DPA-diacyl phosphoinositol (22:5n6-22:5n6 PI) ester lipid displays a propensity for a lamellar phase formation. Double membrane vesicles and multilamellar onion topologies with inhomogeneous distribution of interfacial curvature are formed upon incorporation of the phosphoethanolamine plasmalogen (C16:1p-22:5n6 PE) into dioleoylphosphocholine (DOPC) bilayers. Nanoparticulate formulations of plasmalogen-loaded cubosomes, hexosomes, and various multiphase cubosome- and hexosome-derived architectures and mixed type nano-objects (e.g., oil droplet-embedding vesicles or core-shell particles with soft corona) are produced with PUFA-chain phospholipids and lipophilic antioxidant-containing membrane compositions that are characterized by synchrotron SAXS and cryo-TEM imaging. The obtained multiphase nanostructures reflect the changes in the membrane curvature induced by the inclusion of DPA-based PE and PC plasmalogens, as well as DPA-PI ester derivative, and open new opportunities for exploration of these bioinspired nanoassemblies.
Collapse
Affiliation(s)
- Angelina Angelova
- Institut Galien Paris-Saclay UMR8612, Université Paris-Saclay, CNRS, Châtenay-Malabry, France
| | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Prague, Czech
| | - Markus Drechsler
- Keylab "Electron and Optical Microscopy", Bavarian Polymer Institute, University of Bayreuth, Bayreuth, Germany
| | - Thomas Bizien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, France
| | - Yulia E Gorshkova
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
11
|
Miehle F, Möller G, Cecil A, Lintelmann J, Wabitsch M, Tokarz J, Adamski J, Haid M. Lipidomic Phenotyping Reveals Extensive Lipid Remodeling during Adipogenesis in Human Adipocytes. Metabolites 2020; 10:metabo10060217. [PMID: 32466532 PMCID: PMC7361991 DOI: 10.3390/metabo10060217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/15/2020] [Accepted: 05/23/2020] [Indexed: 12/15/2022] Open
Abstract
Differentiation of preadipocytes into mature adipocytes is a highly complex cellular process. At lipidome level, the adipogenesis remains poorly characterized. To investigate the lipidomic changes during human adipogenesis, we used the LipidyzerTM assay, which quantified 743 lipid species from 11 classes. The undifferentiated human SGBS cell strain showed a heterogeneous lipid class composition with the most abundant classes, phosphatidylethanolamines (PE), phosphatidylcholines (PC), and sphingomyelins (SM). The differentiation process was accompanied by increased ceramide concentrations. After completion of differentiation around day 4, massive lipid remodeling occurred during maturation, characterized by substantial synthesis of diacylglycerols (DAG), lysophosphatidylethanolamines (LPE), PC, PE, SM, and triacylglycerols (TAG). Lipid species composition became more homogeneous during differentiation to highly concentrated saturated and monounsaturated long-chain fatty acids (LCFA), with the four most abundant being C16:0, C16:1, C18:0, and C18:1. Simultaneously, the amount of polyunsaturated and very long-chain fatty acids (VLCFA) markedly decreased. High negative correlation coefficients between PE and PC species containing VLCFA and TAG species as well as between ceramides and SM imply that PE, PC, and ceramides might have served as additional sources for TAG and SM synthesis, respectively. These results highlight the enormous remodeling at the lipid level over several lipid classes during adipogenesis.
Collapse
Affiliation(s)
- Florian Miehle
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (F.M.); (G.M.); (A.C.); (J.L.); (J.T.); (J.A.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Gabriele Möller
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (F.M.); (G.M.); (A.C.); (J.L.); (J.T.); (J.A.)
| | - Alexander Cecil
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (F.M.); (G.M.); (A.C.); (J.L.); (J.T.); (J.A.)
| | - Jutta Lintelmann
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (F.M.); (G.M.); (A.C.); (J.L.); (J.T.); (J.A.)
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, 89075 Ulm, Germany;
| | - Janina Tokarz
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (F.M.); (G.M.); (A.C.); (J.L.); (J.T.); (J.A.)
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (F.M.); (G.M.); (A.C.); (J.L.); (J.T.); (J.A.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, 85764 Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Mark Haid
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; (F.M.); (G.M.); (A.C.); (J.L.); (J.T.); (J.A.)
- Correspondence: ; Tel.: +49-893-187-3234
| |
Collapse
|