1
|
Furth NR, Imel AE, Zawodzinski TA. Comparison of Machine Learning Approaches for Prediction of the Equivalent Alkane Carbon Number for Microemulsions Based on Molecular Properties. J Phys Chem A 2024; 128:6763-6773. [PMID: 39106405 DOI: 10.1021/acs.jpca.4c00936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
The chemical properties of oils are vital in the design of microemulsion systems. The hydrophilic-lipophilic difference equation used to predict microemulsions' phase behavior expresses the oils' physiochemical properties as the equivalent alkane carbon number (EACN). The experimental determination of EACN requires knowledge of the temperature dependence of the microemulsion system and the effects of different surfactant concentrations. Thus, the experimental determination is time-intensive and tedious, requiring days to months for proper separations. Furthermore, the experiments require high purity of chemicals because microemulsions are sensitive to impurities. Our work focuses on the quick and reliable predictions of the EACN with machine learning (ML) models. Due to the immaturity of ML chemical predictions, we compare three graph neural networks (GNNs) and a gradient-boosted tree algorithm, known as XGBoost. The GNNs use the molecular structures represented as simplified molecular-input line-entry system (SMILES) codes for the initial input, which allows us to assess whether geometry optimization is necessary for reliable results. The XGBoost model also begins with the SMILES representations of the molecules but uses molecular descriptors instead of geometry optimizations. The best model tested (crystal graph convolutional neural network with Merck molecular force field-94) has an error of 1.15 EACN units of the true EACN for unknown data with the errors skewed toward zero and an R2 score of 0.9.
Collapse
Affiliation(s)
- Nicholas R Furth
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville 310 Ferris Hall, 1508 Middle Drive, Knoxville, Tennessee 37996, United States
- University of Tennessee-Oak Ridge Innovation Institute, Oak-Ridge, Tennessee 37831, United States
| | - Adam E Imel
- University of Tennessee-Oak Ridge Innovation Institute, Oak-Ridge, Tennessee 37831, United States
- Department of Chemical and Biomolecular Engineering, University of Tennessee 419 Dougherty Engineer Building, 1512 Middle Drive, Knoxville, Tennessee 37996, United States
| | - Thomas A Zawodzinski
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville 310 Ferris Hall, 1508 Middle Drive, Knoxville, Tennessee 37996, United States
- University of Tennessee-Oak Ridge Innovation Institute, Oak-Ridge, Tennessee 37831, United States
- Department of Chemical and Biomolecular Engineering, University of Tennessee 419 Dougherty Engineer Building, 1512 Middle Drive, Knoxville, Tennessee 37996, United States
- Energy Storage and Membrane Materials Group, Oak Ridge National Laboratory, Oak-Ridge, Tennessee 37831, United States
| |
Collapse
|
2
|
Rezaie A, Ghasemi H, Eslami F. An in-depth investigation of the impact of salt nature on the formulation of microemulsion systems. Sci Rep 2023; 13:14362. [PMID: 37658147 PMCID: PMC10474266 DOI: 10.1038/s41598-023-40761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Electrolytes have a wide range of technological applications. Despite the recent improvements in characterizing and predicting the phase behavior of microemulsion systems by hydrophilic-lipophilic deviation (HLD) and net-average curvature (NAC) frameworks, they are ineffective in the presence of different salts. This work seeks to bridge this gap by investigating the influence of salt nature on the microemulsion phase formulation. First, a one-dimensional salinity scan on different microemulsion systems consisting of sodium dodecyl benzene sulfonate as a surfactant, hexane as an oil and, several brines was carried out, and the effect of each salt on the phase behavior were precisely evaluated. The results for optimum salinity and solubilization parameter of different salts were consistent with the Hofmeister series. In addition, multiple linear regression model is presented to accurately predicting the optimum salinity of different salts using this research data and all the available experimental data. The results revealed that the values estimated by this model is in significant consistency with the experimental data by correlation coefficient of 0.92. Finally, the effect of salt type on the NAC parameters (length parameter, and characteristic length[Formula: see text] were evaluated to improve the predicting ability of this equation of state in the presence of various salts. We found that salt nature has a significant impact on both these parameters. It was found that the length parameter is linearly dependent on the optimum ionic strength of salts while the salting-out capacity of each salt was predominant factor affecting the characteristic length.
Collapse
Affiliation(s)
- Ali Rezaie
- Department of Chemical Engineering, Tarbiat Modares University, Jalal Al Ahmad HWY, P.O. Box: 14115-111, Tehran, Iran
| | - Hassan Ghasemi
- Department of Chemical Engineering, Tarbiat Modares University, Jalal Al Ahmad HWY, P.O. Box: 14115-111, Tehran, Iran
| | - Fatemeh Eslami
- Department of Chemical Engineering, Tarbiat Modares University, Jalal Al Ahmad HWY, P.O. Box: 14115-111, Tehran, Iran.
| |
Collapse
|
3
|
Phaodee P, Weston J. Review: Implementing the hydrophilic–lipophilic deviation model when formulating detergents and other surfactant‐related applications. J SURFACTANTS DETERG 2023. [DOI: 10.1002/jsde.12660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
| | - Javen Weston
- College of Engineering and Natural Sciences University of Tulsa Tulsa Oklahoma USA
| |
Collapse
|
4
|
Leng Z, Acosta E. The characteristic curvature (Cc) definition and its use in assessing Cc for single ionic surfactants. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhuotao Leng
- Department of Chemical Engineering and Applied Chemistry University of Toronto Toronto Ontario Canada
| | - Edgar Acosta
- Department of Chemical Engineering and Applied Chemistry University of Toronto Toronto Ontario Canada
| |
Collapse
|
5
|
Ghayour A. A methodology for measuring the characteristic curvature of technical-grade ethoxylated nonionic surfactants: the effects of concentration and dilution. TENSIDE SURFACT DET 2022. [DOI: 10.1515/tsd-2022-2464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
Characterization of the behaviour of commercially available non-ionic surfactants has received considerable attention due to their efficacy in a variety of applications. The main challenge in the application of these types of surfactants is that the hydrophilicity of the surfactant varies with concentration and dilution due to the polydispersity of the ethylene oxide groups. The hydrophilicity of a surfactant can be quantified by the characteristic curvature (Cc) parameter of the hydrophilic–lipophilic difference (HLD) framework. In this work, a model based on natural logarithmic regression was developed to calculate the Cc value of commercial surfactants as a function of surfactant concentration by a fast and simple phase scan. The slope of the Cc curve and the measured Cc at a reference concentration were used to develop the model. The Cc values determined with the model agreed with the measured values from the phase scans. Furthermore, the linear mixing rule proved to be reliable for mixtures of polydisperse ethoxylated surfactants. Finally, the impact of the water-to-oil ratio on the Cc was evaluated and the implications were discussed.
Collapse
Affiliation(s)
- Amir Ghayour
- Syngenta, Honeywood Research Facility , Plattsville , Canada
| |
Collapse
|
6
|
Scheuing DR. Fourier transform infrared spectroscopy in surfactant science: A personal view. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Chen C, Shen H, Harwell JH, Shiau BJ. Characterizing oil mixture and surfactant mixture via hydrophilic-lipophilic deviation (HLD) principle: An insight in consumer products development. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
HLD-NAC design and evaluation of a fully dilutable lecithin-linker SMEDDS for ibuprofen. Int J Pharm 2021; 610:121237. [PMID: 34718090 DOI: 10.1016/j.ijpharm.2021.121237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 11/22/2022]
Abstract
Lecithin-linker microemulsions have been previously proposed as a platform for designing a fully dilutable self-microemulsifying drug delivery system (SMEDDS). This SMEDDS formulation, composed of ethyl caprate (oil), lecithin (Le), glycerol monooleate (lipophilic linker, LL) and polyglycerol caprylate (hydrophilic linker, HL), produced a ternary phase diagram (TPD) that had a fully dilutable path suitable for oral drug delivery. However, introducing ibuprofen as an active pharmaceutical ingredient (API) resulted in TPD phase boundaries that eliminated the fully dilutable path. The purpose of this work was to understand the origin of the changes in the TPD, use that understanding to restore the fully dilutable path with an ibuprofen-loaded SMEDDS, and finally to evaluate the absorption of ibuprofen in vivo. The effect of ibuprofen on the HLD (hydrophilic-lipophilic difference, interpreted as normalized net interfacial curvature) of the system was evaluated via a polar oil model, showing that ibuprofen played a surfactant-like role, having a characteristic curvature (Cc) value of +5 (highly hydrophobic). The net-average curvature (NAC) framework used the HLD calculated with Le, LL, HL and ibuprofen Cc to generate TPDs in ibuprofen lecithin-linker systems. The HLD-NAC simulations show that restoring full dilutability required a highly hydrophilic linker (HL-) with a Cc of -5 or more negative. The fully dilutable path was restored after introducing a hexaglycerol caprylate as HL- (Cc = -6). Plasma concentration profiles obtained with this ibuprofen-loaded SMEDDS showed a more than three-fold increase in the area under the curve (AUC) of rat plasma concentration profiles compared to the same 25 mg/kg ibuprofen dose in suspension.
Collapse
|
9
|
Dado GP, Knox PW, Lang RM, Knock MM. Non‐linear
changes in phase inversion temperature for oil and water emulsions of nonionic surfactant mixtures. J SURFACTANTS DETERG 2021. [DOI: 10.1002/jsde.12557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Acosta E, Natali S. Effect of surfactant concentration on the hydrophobicity of polydisperse alkyl ethoxylates. J SURFACTANTS DETERG 2021. [DOI: 10.1002/jsde.12548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Edgar Acosta
- Department of Chemical Engineering and Applied Chemistry University of Toronto Toronto Ontario Canada
| | - Sanja Natali
- Chemical Intermediates ExxonMobil Chemical Company Houston Texas USA
| |
Collapse
|
11
|
Design of industrial wastewater demulsifier by HLD-NAC model. Sci Rep 2021; 11:16111. [PMID: 34373524 PMCID: PMC8352873 DOI: 10.1038/s41598-021-95485-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
The chemical method is one of the treatment techniques for the separation of oil–water emulsion systems. The selection of appropriate demulsifiers for each emulsion system is the most challenging issue. Hydrophilic-lipophilic-deviation (HLD) is a powerful semi-empirical model, providing predictive tools to formulate the emulsion and microemulsion systems. This work aims to apply HLD to obtain an optimal condition for demulsification of oil-in-water emulsion system—real industrial wastewater—with different water in oil ratios (WOR). Therefore, the oil parameter of the contaminant oil and surfactant parameter for three types of commercial surfactants were calculated by performing salinity scans. Furthermore, the net-average-curvature (NAC) framework coupled with HLD was used to predict the phase behavior of the synthetic microemulsion systems, incorporating solubilization properties, the shape of droplets, and quality of optimum formulation. The geometrical sizes of non-spherical droplets (Ld, Rd)—as an indicator of how droplet sizes are changing with HLD—were consistent with the separation results. Correlating Ld/Rd at phase transition points with bottle test results validates the hypothesis that NAC-predicted geometries and demulsification behavior are interconnected. Finally, the effect of sec-butanol was examined on both synthetic and real systems, providing reliable insights in terms of the effect of alcohol for WOR ≠ 1.
Collapse
|
12
|
Gradzielski M, Duvail M, de Molina PM, Simon M, Talmon Y, Zemb T. Using Microemulsions: Formulation Based on Knowledge of Their Mesostructure. Chem Rev 2021; 121:5671-5740. [PMID: 33955731 DOI: 10.1021/acs.chemrev.0c00812] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Microemulsions, as thermodynamically stable mixtures of oil, water, and surfactant, are known and have been studied for more than 70 years. However, even today there are still quite a number of unclear aspects, and more recent research work has modified and extended our picture. This review gives a short overview of how the understanding of microemulsions has developed, the current view on their properties and structural features, and in particular, how they are related to applications. We also discuss more recent developments regarding nonclassical microemulsions such as surfactant-free (ultraflexible) microemulsions or ones containing uncommon solvents or amphiphiles (like antagonistic salts). These new findings challenge to some extent our previous understanding of microemulsions, which therefore has to be extended to look at the different types of microemulsions in a unified way. In particular, the flexibility of the amphiphilic film is the key property to classify different microemulsion types and their properties in this review. Such a classification of microemulsions requires a thorough determination of their structural properties, and therefore, the experimental methods to determine microemulsion structure and dynamics are reviewed briefly, with a particular emphasis on recent developments in the field of direct imaging by means of electron microscopy. Based on this classification of microemulsions, we then discuss their applications, where the application demands have to be met by the properties of the microemulsion, which in turn are controlled by the flexibility of their amphiphilic interface. Another frequently important aspect for applications is the control of the rheological properties. Normally, microemulsions are low viscous and therefore enhancing viscosity has to be achieved by either having high concentrations (often not wished for) or additives, which do not significantly interfere with the microemulsion. Accordingly, this review gives a comprehensive account of the properties of microemulsions, including most recent developments and bringing them together from a united viewpoint, with an emphasis on how this affects the way of formulating microemulsions for a given application with desired properties.
Collapse
Affiliation(s)
- Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Magali Duvail
- ICSM, Université Montpellier, CEA, CNRS, ENSCM, 30207 Marcoule, France
| | - Paula Malo de Molina
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain.,IKERBASQUE - Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Miriam Simon
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany.,Department of Chemical Engineering and the Russell Berrie Nanotechnolgy Inst. (RBNI), Technion-Israel Institute of Technology, Haifa, IL-3200003, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnolgy Inst. (RBNI), Technion-Israel Institute of Technology, Haifa, IL-3200003, Israel
| | - Thomas Zemb
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany.,ICSM, Université Montpellier, CEA, CNRS, ENSCM, 30207 Marcoule, France
| |
Collapse
|
13
|
Acosta E. Engineering cosmetics using the Net-Average-Curvature (NAC) model. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
How to Use the Normalized Hydrophilic-Lipophilic Deviation (HLDN) Concept for the Formulation of Equilibrated and Emulsified Surfactant-Oil-Water Systems for Cosmetics and Pharmaceutical Products. COSMETICS 2020. [DOI: 10.3390/cosmetics7030057] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The effects of surfactant molecules involved in macro-, mini-, nano-, and microemulsions used in cosmetics and pharmaceuticals are related to their amphiphilic interactions with oil and water phases. Basic ideas on their behavior when they are put together in a system have resulted in the energy balance concept labeled the hydrophilic-lipophilic deviation (HLD) from optimum formulation. This semiempirical equation integrates in a simple linear relationship the effects of six to eight variables including surfactant head and tail, sometimes a cosurfactant, oil-phase nature, aqueous-phase salinity, temperature, and pressure. This is undoubtedly much more efficient than the hydrophilic-lipophilic balance (HLB) which has been used since 1950. The new HLD is quite important because it allows researchers to model and somehow predict the phase behavior, the interfacial tension between oil and water phases, their solubilization in single-phase microemulsion, as well as the corresponding properties for various kinds of macroemulsions. However, the HLD correlation, which has been developed and used in petroleum applications, is sometimes difficult to apply accurately in real cases involving ionic–nonionic surfactant mixtures and natural polar oils, as it is the case in cosmetics and pharmaceuticals. This review shows the confusion resulting from the multiple definitions of HLD and of the surfactant parameter, and proposes a “normalized” Hydrophilic-Lipophilic Deviation (HLDN) equation with a surfactant contribution parameter (SCP), to handle more exactly the effects of formulation variables on the phase behavior and the micro/macroemulsion properties.
Collapse
|
15
|
Ghayour A, Acosta E. Correction to "Characterizing the Oil-like and Surfactant-like Behavior of Polar Oils". LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3276-3277. [PMID: 32186386 DOI: 10.1021/acs.langmuir.0c00510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|
16
|
Aubry JM, Ontiveros JF, Salager JL, Nardello-Rataj V. Use of the normalized hydrophilic-lipophilic-deviation (HLD N) equation for determining the equivalent alkane carbon number (EACN) of oils and the preferred alkane carbon number (PACN) of nonionic surfactants by the fish-tail method (FTM). Adv Colloid Interface Sci 2020; 276:102099. [PMID: 31931276 DOI: 10.1016/j.cis.2019.102099] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 12/22/2022]
Abstract
The standard HLD (Hydrophilic-Lipophilic-Deviation) equation expressing quantitatively the deviation from the "optimum formulation" of Surfactant/Oil/Water systems is normalized and simplified into a relation including only the three more meaningful formulation variables, namely (i) the "Preferred Alkane Carbon Number" PACN which expresses the amphiphilicity of the surfactant, (ii) the "Equivalent Alkane Carbon Number" EACN which accurately reflects the hydrophobicity of the oil and (iii) the temperature which has a strong influence on ethoxylated surfactants and is thus selected as an effective, continuous and reversible scanning variable. The PACN and EACN values, as well as the "temperature-sensitivity-coefficient"τ of surfactants are determined by reviewing available data in the literature for 17 nonionic n-alkyl polyglycol ether (CiEj) surfactants and 125 well-defined oils. The key information used is the so-called "fish-tail-temperature" T* which is a unique data point in true ternary CiEj/Oil/Water fish diagrams. The PACNs of CiEj surfactants are compared with other descriptors of their amphiphilicity, namely, the cloud point, the HLB number and the PIT-slope value. The EACNs of oils are rationalized by the Effective-Packing-Parameter concept and modelled thanks to the COSMO-RS theory.
Collapse
|
17
|
Choi F, Chen R, Acosta EJ. Predicting the effect of additives on wormlike micelle and liquid crystal formation and rheology with phase inversion phenomena. J Colloid Interface Sci 2019; 564:216-229. [PMID: 31911226 DOI: 10.1016/j.jcis.2019.12.105] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/10/2019] [Accepted: 12/24/2019] [Indexed: 11/27/2022]
Abstract
HYPOTHESIS Surfactant-based viscoelastic fluids are used in consumer products such as body wash, cosmetics, and in hydraulic fracturing fluids to suspend proppant, among others. The solubilization of oil within these fluids changes the curvature of the surfactant and their nanostructure and rheological properties. The curvature-based hydrophilic-lipophilic-difference + net-average-curvature (HLD-NAC) framework may be able to quantify curvature changes and predict the formulation conditions required to obtain viscoelasticity. EXPERIMENTS Phase inversion experiments were conducted for combinations of commercial-grade C8, C10 and C12 tetrapropylene glycol ether sulfate (extended) surfactant and sodium dihexyl sulfosuccinate with oil to obtain the HLD-NAC parameters. Wormlike micelles (WLMs) and liquid crystals (LCs) were then formulated and characterized. The transition from spherical micelles to WLMs/LCs at different oil contents was identified and compared with phase transitions predicted via the HLD-NAC model. FINDINGS The spherical micelle to branched WLM/LC transition in surfactant + oil systems coincided with the water-continuous (Type I) to bicontinuous (Type III) microemulsion phase transition predicted with the HLD-NAC model. Using this finding, the transition of commercial-grade sodium laureth sulfate (SLES) micelles to viscoelastic LCs containing various oils was predicted using the HLD-NAC. The HLD-NAC also predicted the presence of a secondary peak in viscosity obtained in "salt curves" experiments associated with branched WLMs and LCs.
Collapse
Affiliation(s)
- Francis Choi
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Ruixu Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Edgar J Acosta
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|