1
|
Jeon C, Byeon JH, Park E, Kim S, Kim S, Cho WK. l-DOPA-Based Polymer Coatings via Oxidative Radical Polymerization and Their Antifouling Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1099-1106. [PMID: 39810349 DOI: 10.1021/acs.langmuir.4c04417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Bioinspired coatings that mimic the adhesive properties of mussels have received considerable attention for surface modification applications. While polydopamine chemistry has been widely used to develop functional coatings, 3,4-dihydroxyphenyl-l-alanine (l-DOPA), a key component of mussel adhesive proteins, has received less attention because, compared to dopamine, it is relatively difficult to form effective coatings on solid substrates in mildly alkaline solutions. Although several methods have been explored to improve the efficiency of l-DOPA coatings, there is still a need to expand the l-DOPA-based surface chemistry. Herein, we report a simple yet efficient approach to forming poly(l-DOPA)/polymer coatings via radical polymerization with various acrylic monomers. In this one-step, dip-coating process, free radicals generated by the oxidation of l-DOPA either coupled to form poly(l-DOPA) or initiated the polymerization of the acrylic monomers, resulting in polymer coatings on a wide range of substrates. The feasibility of this coating process was confirmed by ellipsometry, contact angle goniometry, X-ray photoelectron spectroscopy, and atomic force microscopy. As a potential application, the antifouling properties of the poly(l-DOPA)/poly(oligo(ethylene glycol) methacrylate) coatings were investigated against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus), showing a significant reduction in bacterial adhesion. We think that this study broadens the scope of l-DOPA-based surface chemistry and provides a new avenue for the development of biomimetic functional coatings in materials science and surface engineering.
Collapse
Affiliation(s)
- Chanyi Jeon
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong Hyeon Byeon
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eunji Park
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seoyoung Kim
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sunhee Kim
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Woo Kyung Cho
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
2
|
Heo Y, Lee J, Kim H, Ryu CY, Kim I, Choi I, Kim M, Kang SM. N-Alkylation of Dopamine and Its Impact on Surface Coating Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20692-20699. [PMID: 39287557 DOI: 10.1021/acs.langmuir.4c02771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Surface coating with dopamine (DA) has received significant attention over the past decade due to its compatibility with other surface coating techniques and versatility, making it applicable to solid surfaces regardless of substrate and shape. Much effort has been made to elucidate the origin of its surface coating capability, and as a result, many important factors affecting the coating properties have been determined. For example, it has been reported that the length of the carbon chain between catechol and amino groups, the attachment of specific functional groups to the catechol ring and amino group, and the replacement of the amino group with another functional group can affect the surface coating properties of DA. Despite these various attempts, there are still many factors that remain unknown. In this study, we investigate the effect of N-alkylation on DA coating. N-Ethyl-DA, N-propyl-DA, and N-isopropyl-DA are newly synthesized through simple organic reactions, and the coating efficiency of DA derivatives is compared with nucleophilicity and steric bulkiness. As a result, the coating efficiency of N-ethyl-DA and N-propyl-DA is lower than for pristine DA and N-methyl-DA, but it is possible to coat solid surfaces with alkyl-functionalized DA. In contrast, the coating with sterically bulky N-isopropyl-DA is almost unsuccessful.
Collapse
Affiliation(s)
- Yoonji Heo
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Jinwoo Lee
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Haein Kim
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Chae Young Ryu
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Inho Kim
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Isaac Choi
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sung Min Kang
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
3
|
Kim Y, Jeong Y, Kang SM. Surface Coating with Naphthalene Trisulfonate/Hafnium(IV) Complexes: Versatility and Post-Functionalization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12711-12716. [PMID: 36209435 DOI: 10.1021/acs.langmuir.2c02336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Naphthalene trisulfonate is found to have versatile surface coating capability when combined with hafnium(IV) ions, thereby forming complexes. Solid substrates such as titanium/titanium dioxide, glass, and nylon immersed in a solution of naphthalene trisulfonate and HfIV produces naphthalene trisulfonate/HfIV complex coating. The coating is not produced when the HfIV ions are absent or when naphthalene monosulfonate replaces naphthalene trisulfonate; this indicates the significance of HfIV ions and multiple sulfonates in this coating system. The versatile surface coating property of naphthalene trisulfonate/HfIV complexes is attributed to the coexistence of hydrophobic aromatic and hydrophilic side groups in naphthalene trisulfonate. Additionally, HfIV ion-mediated cross-linking reactions between naphthalene trisulfonate molecules induce molecular assembly, facilitating versatile surface coating. Post-functionalization of the coating is accomplished through additional HfIV-mediated coordinate bond formation; alginate and λ-carrageenan are successfully grafted onto the coating for nonbiofouling applications.
Collapse
Affiliation(s)
- Yejin Kim
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Yeonwoo Jeong
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sung Min Kang
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
4
|
Kim Y, You A, Kim D, Bisht H, Heo Y, Hong D, Kim M, Kang SM. Effect of N-Methylation on Dopamine Surface Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6404-6410. [PMID: 35574836 DOI: 10.1021/acs.langmuir.2c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dopamine (DA) surface chemistry has received significant attention because of its applicability in a wide range of research fields and the ability to graft functional molecules onto numerous solid surfaces. Various DA derivatives have been newly synthesized to identify key factors affecting the coating efficiency and to advance the coating system development. The oxidation of catechol into quinone followed by internal cyclization via the nucleophilic attack of primary amine is crucial for DA-based surface coating. Thus, it is expected that the amine group's nucleophilicity control directly affects the coating efficiency. However, it has not been systematically investigated, and most studies have been conducted with the focus on the transformation of amines into amides, despite such approaches decreasing the coating efficiency; the nitrogen in amides is less nucleophilic than that in free amines. In this study, we investigated the effect of N-alkylation on dopamine surface chemistry. N,N-Dimethyldopamine (DMDA) was newly synthesized, and the coating efficiency was systematically compared with DA and N-methyldopamine (MDA). DA N-monomethylation improved the coating rate by increasing the nitrogen nucleophilicity, whereas N,N-dimethylation dramatically decreased the DA surface coating property. In addition, MDA remained capable of universal surface coating and secondary reactions using the surface catechols. This study provides opportunities for developing coating materials with advanced functions and an improved coating rate.
Collapse
Affiliation(s)
- Yejin Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Ahrom You
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Dahee Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Himani Bisht
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Yoonji Heo
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Daewha Hong
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Sung Min Kang
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| |
Collapse
|
5
|
An S, Nam J, Kanimozhi C, Song Y, Kim S, Shin N, Gopalan P, Kim M. Photoimageable Organic Coating Bearing Cyclic Dithiocarbonate for a Multifunctional Surface. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3274-3283. [PMID: 35045603 DOI: 10.1021/acsami.1c19559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report the fabrication of photocross-linkable and surface-functionalizable polymeric thin films using reactive cyclic dithiocarbonate (DTC)-containing copolymers. The chemical functionalities of these material surfaces were precisely defined with light illumination. The DTC copolymers, namely, poly(dithiocarbonate methylene methacrylate-random-alkyl methacrylate)s, were synthesized via reversible addition-fragmentation chain transfer polymerization, and the reaction kinetics was thoroughly analyzed. The copolymers were cross-linked into a coating using a bifunctional urethane cross-linker that contains a photolabile o-nitrobenzyl group and releases aniline upon exposure to light. The nucleophilic attack of the aromatic amine opens the DTC group, forming a carbamothioate bond and generating a reactive thiol group in the process. The surface concentrations of the unreacted DTC and thiol were effectively controlled by varying the amounts of the copolymer and the cross-linker. The use of methacrylate comonomers led to additional reactive surface functionality such as carboxylic acid via acid hydrolysis. The successful transformations of the resulting DTC, thiol, and carboxylic acid groups to different functionalities via sequential nucleophilic ring opening, thiol-ene, and carbodiimide coupling reactions under ambient conditions were confirmed quantitatively using X-ray photoelectron spectroscopy. The presented chemistries were readily adapted to the immobilization of complex molecules such as a fluorophore and a protein in lithographically defined regions, highlighting their potential in creating organic coatings that can have multiple functional groups under ambient conditions.
Collapse
Affiliation(s)
- Sol An
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jieun Nam
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Catherine Kanimozhi
- Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Youngjoo Song
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Seungjun Kim
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Naechul Shin
- Department of Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Padma Gopalan
- Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Myungwoong Kim
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
6
|
Azim N, Orrico JF, Appavoo D, Zhai L, Rajaraman S. Polydopamine surface functionalization of 3D printed resin material for enhanced polystyrene adhesion towards insulation layers for 3D microelectrode arrays (3D MEAs). RSC Adv 2022; 12:25605-25616. [PMID: 36320408 PMCID: PMC9493467 DOI: 10.1039/d2ra03911g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/16/2022] [Indexed: 12/05/2022] Open
Abstract
3D printing involves the use of photopolymerizable resins, which are toxic and typically have incompatible properties with materials such as polystyrene (PS), which present limitations for biomedical applications. We present a method to dramatically improve the poor adhesion between the PS insulative layer on 3D printed Microelectrode Array (MEA) substrates by functionalizing the resin surface with polydopamine (PDA), a mussel-inspired surface chemistry derivative. A commercial 3D printing prepolymer resin, FormLabs Clear (FLC), was printed using a digital light processing (DLP) printer and then surface functionalized with PDA by alkali-induced aqueous immersion deposition and self-polymerization. It was observed that the adhesion of the PS to FLC was improved due to the precision emanating from the DLP method and further improved after the functionalization of DLP printed substrates with PDA at 1, 12, and 24 h time intervals. The adhesion of PS was evaluated through scotch tape peel testing and instron measurements of planar substrates and incubation testing with qualitative analysis of printed culture wells. The composition and topology of the samples were studied to understand how the properties of the surface change after PDA functionalization and how this contributes to the overall improvement in PS adhesion. Furthermore, the surface energies at each PDA deposition time were calculated from contact angle studies as it related to adhesion. Finally, biocompatibility assays of the newly modified surfaces were performed using mouse cardiac cells (HL-1) to demonstrate the biocompatibility of the PDA functionalization process. PDA surface functionalization of 3D DLP printed FLC resin resulted in a dramatic improvement of thin film PS adhesion and proved to be a biocompatible solution for improving additive manufacturing processes to realize biosensors such as in vitro MEAs. 3D printing involves the use of toxic photopolymerizable resins which typically have incompatible properties with polystyrene for biomedical applications. Herein, we use 3D printing tricks and polydopamine to dramatically improve adhesion.![]()
Collapse
Affiliation(s)
- Nilab Azim
- NanoScience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL, 32826, USA
| | - Julia Freitas Orrico
- NanoScience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, USA
| | - Divambal Appavoo
- NanoScience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, USA
| | - Lei Zhai
- NanoScience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL, 32826, USA
| | - Swaminathan Rajaraman
- NanoScience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, USA
- Department of Materials Science & Engineering, University of Central Florida, Orlando, FL, 32826, USA
- Department of Electrical & Computer Engineering, University of Central Florida, Orlando, FL, 32826, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA
| |
Collapse
|
7
|
Xu Y, Ji Y, Ma J. Hydrophobic and Hydrophilic Effects in a Mussel-Inspired Citrate-Based Adhesive. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:311-321. [PMID: 33351636 DOI: 10.1021/acs.langmuir.0c02895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The citrate-based tissue adhesive, synthesized by citric acid, diol, and dopamine, is a kind of mussel-inspired adhesive. The adhesion of mussel-inspired adhesive is not completely dependent on 3, 4-dihydroxyphenylalanine (Dopa) groups. The backbone structure of the adhesive also greatly affects the adhesion. In this study, to explore the effects of hydrophobicity and hydrophilicity of the backbone structure on adhesion, we prepared a series of citrate-based tissue adhesives (POEC-d) by changing the molar ratio of two diols, 1, 8-octanediol (O) and poly(ethylene oxide) (E), which formed hydrophobic segment units and hydrophilic segment units, respectively, in the molecule structure. The properties of cured adhesives showed that the adhesive with high E units had high swelling, rapid degradation, and low cohesion. In the adhesion strength measurement on the porcine skin, the adhesive with higher hydrophobicity was more likely to perform better. For the interfacial adhesion, hydrophilicity was conducive to the diffusion and penetration on the skin surface, but hydrophobic interaction showed a stronger effect to adhere with skin and hydrophobic association increased the adhesive concentration on the interface; for the bulk cohesion, hydrophobicity led to coacervation, promoting the Dopa-quinone coupling for cross-linking. In this amphipathic, citrate-based, soft-tissue adhesive system, when the feed ratio of hydrophilic segment was lower than 0.7, the coacervation could be formed through hydrophobic interaction, forming an efficient underwater adhesion system similar to that of mussels.
Collapse
Affiliation(s)
- Yiwen Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yali Ji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jinghong Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
8
|
Fan CJ, Wen ZB, Xu ZY, Xiao Y, Wu D, Yang KK, Wang YZ. Adaptable Strategy to Fabricate Self-Healable and Reprocessable Poly(thiourethane-urethane) Elastomers via Reversible Thiol–Isocyanate Click Chemistry. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00239] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Cheng-Jie Fan
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhi-Bin Wen
- Laboratory of Polymeric and Composite Materials (LPCM) Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, Mons B-7000, Belgium
| | - Zhi-Yuan Xu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yi Xiao
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Di Wu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ke-Ke Yang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|