1
|
Qin J, Ziemann E, Bar-Zeev E, Bone SE, Liang Y, Mauter MS, Herzberg M, Bernstein R. Microporous Polyethersulfone Membranes Grafted with Zwitterionic Polymer Brushes Showing Microfiltration Permeance and Ultrafiltration Bacteriophage Removal. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18343-18353. [PMID: 37010122 DOI: 10.1021/acsami.3c01495] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Virus removal from water using microfiltration (MF) membranes is of great interest but remains challenging owing to the membranes' mean pore sizes typically being significantly larger than most viruses. We present microporous membranes grafted with polyzwitterionic brushes (N-dimethylammonium betaine) that combine bacteriophage removal in the range of ultrafiltration (UF) membranes with the permeance of MF membranes. Brush structures were grafted in two steps: free-radical polymerization followed by atom transfer radical polymerization (ATRP). Attenuated total reflection Fourier transform infrared (ATR-FTIR) and X-ray photoelectron (XPS) verified that grafting occurred at both sides of the membranes and that the grafting increased with increasing the zwitterion monomer concentration. The log reduction values (LRVs) of the pristine membrane increased from less than 0.5 LRV for T4 (∼100 nm) and NT1 (∼50 nm) bacteriophages to up to 4.5 LRV for the T4 and 3.1 LRV for the NT1 for the brush-grafted membranes with a permeance of about 1000 LMH/bar. The high permeance was attributed to a high-water fraction in the ultra-hydrophilic brush structure. The high measured LRVs of the brush-grafted membranes were attributed to enhanced bacteriophages exclusion from the membrane surface and entrapment of the ones that penetrated the pores due to the membranes' smaller mean pore-size and cross-section porosity than those of the pristine membrane, as seen by scanning electron microscopy (SEM) and measured using liquid-liquid porometry. Micro X-ray fluorescence (μ-XRF) spectrometry and nanoscale secondary ion mass spectrometry showed that 100 nm Si-coated gold nanospheres accumulated on the surface of the pristine membrane but not on the brush-coated membrane and that the nanospheres that penetrated the membranes were entrapped in the brush-grafted membrane but passed the pristine one. These results corroborate the LRVs obtained during filtration experiments and support the inference that the increased removal was due to a combined exclusion mechanism and entrapment. Overall, these microporous brush-grafted membranes show potential for use in advanced water treatment.
Collapse
Affiliation(s)
- Ji Qin
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research of the Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet 84990, Israel
| | - Eric Ziemann
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research of the Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet 84990, Israel
| | - Edo Bar-Zeev
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research of the Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet 84990, Israel
| | - Sharon E Bone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Yuanzhe Liang
- Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Meagan S Mauter
- Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Moshe Herzberg
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research of the Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet 84990, Israel
| | - Roy Bernstein
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research of the Ben-Gurion University of the Negev, Campus Sde Boker, Midreshet 84990, Israel
| |
Collapse
|
2
|
Förster C, Andrieu-Brunsen A. Recent developments in visible light induced polymerization towards its application to nanopores. Chem Commun (Camb) 2023; 59:1554-1568. [PMID: 36655782 PMCID: PMC9904278 DOI: 10.1039/d2cc06595a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Visible light induced polymerizations are a strongly emerging field in recent years. Besides the often mild reaction conditions, visible light offers advantages of spatial and temporal control over chain growth, which makes visible light ideal for functionalization of surfaces and more specifically of nanoscale pores. Current challenges in nanopore functionalization include, in particular, local and highly controlled polymer functionalizations. Using spatially limited light sources such as lasers or near field modes for light-induced polymer functionalization is envisioned to allow local functionalization of nanopores and thereby improve nanoporous material performance. These light sources are usually providing visible light while classical photopolymerizations are mostly based on UV-irradiation. In this review, we highlight developments in visible light induced polymerizations and especially in visible light induced controlled polymerizations as well as their potential for nanopore functionalization. Existing examples of visible light induced polymerizations in nanopores are emphasized.
Collapse
Affiliation(s)
- Claire Förster
- Macromolecular Chemistry – Smart Membranes, Technische Universität Darmstadt64287DarmstadtGermanyannette.andrieu-brunsen@.tu-darmstadt.de
| | - Annette Andrieu-Brunsen
- Macromolecular Chemistry – Smart Membranes, Technische Universität Darmstadt64287DarmstadtGermanyannette.andrieu-brunsen@.tu-darmstadt.de
| |
Collapse
|
3
|
Flejszar M, Ślusarczyk K, Chmielarz P, Wolski K, Isse AA, Gennaro A, Wytrwal-Sarna M, Oszajca M. Working electrode geometry effect: A new concept for fabrication of patterned polymer brushes via SI-seATRP at ambient conditions. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
4
|
Chen G, Dormidontova E. PEO-Grafted Gold Nanopore: Grafting Density, Chain Length, and Curvature Effects. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guang Chen
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Elena Dormidontova
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
5
|
Pardehkhorram R, Andrieu-Brunsen A. Pushing the limits of nanopore transport performance by polymer functionalization. Chem Commun (Camb) 2022; 58:5188-5204. [PMID: 35394003 DOI: 10.1039/d2cc01164f] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Inspired by the design and performance of biological pores, polymer functionalization of nanopores has emerged as an evolving field to advance transport performance within the last few years. This feature article outlines developments in nanopore functionalization and the resulting transport performance including gating based on electrostatic interaction, wettability and ligand binding, gradual transport controlled by polymerization as well as functionalization-based asymmetric nanopore and nanoporous material design going towards the transport direction. Pushing the limits of nanopore transport performance and thus reducing the performance gap between biological and technological pores is strongly related to advances in polymerization chemistry and their translation into nanopore functionalization. Thereby, the effect of the spatial confinement has to be considered for polymer functionalization as well as for transport regulation, and mechanistic understanding is strongly increased by combining experiment and theory. A full mechanistic understanding together with highly precise nanopore structure design and polymer functionalization is not only expected to improve existing application of nanoporous materials but also opens the door to new technologies. The latter might include out of equilibrium devices, ionic circuits, or machine learning based sensors.
Collapse
Affiliation(s)
- Raheleh Pardehkhorram
- Macromolecular Chemistry, Smart Membranes, Technical University of Darmstadt, 64287 Darmstadt, Germany.
| | - Annette Andrieu-Brunsen
- Macromolecular Chemistry, Smart Membranes, Technical University of Darmstadt, 64287 Darmstadt, Germany.
| |
Collapse
|
6
|
Yang Y, Xu D, Liu Q, Wang Q, Yu H, Zhu X, Song Y. Bipolar Electrochemical Anodization Route for the Fabrication of Porous Anodic Alumina with Nanopore Gradients. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4340-4346. [PMID: 33792327 DOI: 10.1021/acs.langmuir.1c00405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porous anodic alumina (PAA) films with homogeneous nanopores are achieved by traditional anodization. Here, we present a unique anodization technique based on bipolar electrochemistry to fabricate PAA films with nanopore gradients. In an oxalic acid solution dissolved in ethylene glycol, a stable bipolar anodization process is realized. The PAA film prepared at 280 V exhibits a continuous change in interpore distance from ∼171 to ∼83 nm over a range of only 5 mm on the aluminum sheet. Higher driving voltages lead to larger interpore distances and steeper nanopore gradients. Further, no direct electrical connection is required for this bipolar anodization.
Collapse
Affiliation(s)
- Yan Yang
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dawei Xu
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qianqian Liu
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qi Wang
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huiwen Yu
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xufei Zhu
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ye Song
- Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
7
|
Domagalski JT, Xifre-Perez E, Marsal LF. Recent Advances in Nanoporous Anodic Alumina: Principles, Engineering, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:430. [PMID: 33567787 PMCID: PMC7914664 DOI: 10.3390/nano11020430] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
The development of aluminum anodization technology features many stages. With the story stretching for almost a century, rather straightforward-from current perspective-technology, raised into an iconic nanofabrication technique. The intrinsic properties of alumina porous structures constitute the vast utility in distinct fields. Nanoporous anodic alumina can be a starting point for: Templates, photonic structures, membranes, drug delivery platforms or nanoparticles, and more. Current state of the art would not be possible without decades of consecutive findings, during which, step by step, the technique was more understood. This review aims at providing an update regarding recent discoveries-improvements in the fabrication technology, a deeper understanding of the process, and a practical application of the material-providing a narrative supported with a proper background.
Collapse
Affiliation(s)
| | | | - Lluis F. Marsal
- Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avinguda dels Països Catalans, 26, 43007 Tarragona, Spain; (J.T.D.); (E.X.-P.)
| |
Collapse
|