1
|
de Alwis C, Wahr K, Perrine KA. Influence of Cations on Direct CO 2 Capture and Mineral Film Formation: The Role of KCl and MgCl 2 at the Air/Electrolyte/Iron Interface. J Phys Chem A 2024; 128:4052-4067. [PMID: 38718205 DOI: 10.1021/acs.jpca.4c01096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Uncovering the mechanisms associated with CO2 capture through mineralization is vital for addressing rising CO2 levels. Iron in planetary soils, the mineral cycle, and atmospheric dust react with CO2 through complex surface chemistry. Here, the effect of cations on the growth of carbonate films on iron surfaces was investigated. In situ polarized modulated infrared reflection absorption spectroscopy was used to measure CO2 adsorption and oxidation of iron in MgCl2(aq) and KCl(aq), compared to FeCl2(aq) at the air/electrolyte/iron interface. The cation was found to influence the film composition and growth rates, as corroborated by infrared and photoelectron spectroscopy. In MgCl2(aq), a mixture of hydromagnesite, magnesite, and a Mg hydroxy carbonate film was grown on iron, while in KCl(aq), a potassium-rich bicarbonate film was grown. The cations were found to affect the rates of hydroxylation and carbonation, confirming a specific cation effect on carbonate film growth. In the submerged region, a heterogeneous mixture of lepidocrocite and iron hydroxy carbonate was produced, suggesting that Fe2+ dominates the surface products. Surface roughness measurements from in situ atomic force microscopy indicate iron initially corrodes faster in MgCl2(aq) than KCl(aq), due to the Cl- ions that initiate pitting and corrosion. In this region, cations were not found to affect the morphologies. This study shows surface corrosion is necessary to provide nucleation sites for film growth and that the cations influence the carbonate film, relevant for CO2 capture and planetary processes.
Collapse
Affiliation(s)
- Chathura de Alwis
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Kayleigh Wahr
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Kathryn A Perrine
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
2
|
de Alwis C, Trought M, Lundeen J, Perrine KA. Effect of Cations on the Oxidation and Atmospheric Corrosion of Iron Interfaces to Minerals. J Phys Chem A 2021; 125:8047-8063. [PMID: 34491752 DOI: 10.1021/acs.jpca.1c06451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Surface corrosion involves a series of redox reactions that are catalyzed by the presence of ions. On infrastructure surfaces and in complex and natural environments, iron surfaces readily undergo redox reactions, impacting chemical processes. In this study, the effect of how cations influence the formation of the mineral scale on iron surfaces and its connection to surface corrosion was investigated in CaCl2(aq) and NaCl(aq) electrolytes. Polarized modulated-infrared reflection absorption spectroscopy (PM-IRRAS) measurements were used to measure the oxidation and formation of carbonates at the air/electrolyte/iron interface, which confirmed that the iron surface oxidized faster in CaCl2(aq) than in NaCl(aq). PM-IRRAS, attenuated total reflectance-Fourier transformed infrared spectroscopy, and X-ray photoelectron spectroscopy show that after the adsorption of atmospheric O2 and CO2, calcium carbonate (CaCO3) in the form of calcite and aragonite was produced on iron in the presence of CaCl2(aq), whereas siderite (FeCO3) was produced on the surface of iron in the presence of NaCl(aq). However, in either solution without gradual O2 and CO2 exposure, a heterogeneous mixture of lepidocrocite (γ-FeOOH) and an iron hydroxy carbonate (Fex(OH)yCO3) was grown on the iron surface. In situ liquid AFM was used to measure the surface roughness in CaCl2(aq) and NaCl(aq), as an estimation of the corrosion rate. In CaCl2(aq), Fe was found to corrode faster than Fe in NaCl(aq) due to more ions at equimolar concentrations. Surface physical changes, as measured by ex situ AFM, confirmed the presence of a heterogeneous mixture of γ-FeOOH and an Fex(OH)yCO3 in the submerged region. This indicates that the cation does not affect the type of mineral grown on the Fe surface in the region completely submerged in the electrolyte. These results suggest that the cations play a unique role in the initial stages of corrosion at the interface region, influencing the uptake of atmospheric CO2 and mineral nucleation. The knowledge gained from these interfacial reactions are important for understanding the connection between surface corrosion, mineral grown, and CO2 capture for sequestration.
Collapse
Affiliation(s)
- Chathura de Alwis
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Mikhail Trought
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Julia Lundeen
- Department of Materials Science & Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Kathryn A Perrine
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
3
|
Sit I, Wu H, Grassian VH. Environmental Aspects of Oxide Nanoparticles: Probing Oxide Nanoparticle Surface Processes Under Different Environmental Conditions. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:489-514. [PMID: 33940931 DOI: 10.1146/annurev-anchem-091420-092928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Surface chemistry affects the physiochemical properties of nanoparticles in a variety of ways. Therefore, there is great interest in understanding how nanoparticle surfaces evolve under different environmental conditions of pH and temperature. Here, we discuss the use of vibrational spectroscopy as a tool that allows for in situ observations of oxide nanoparticle surfaces and their evolution due to different surface processes. We highlight oxide nanoparticle surface chemistry, either engineered anthropogenic or naturally occurring geochemical nanoparticles, in complex media, with a focus on the impact of (a) pH on adsorption, intermolecular interactions, and conformational changes; (b) surface coatings and coadsorbates on protein adsorption kinetics and protein conformation; (c) surface adsorption on the temperature dependence of protein structure phase changes; and (d) the use of two-dimensional correlation spectroscopy to analyze spectroscopic results for complex systems. An outlook of the field and remaining challenges is also presented.
Collapse
Affiliation(s)
- Izaac Sit
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA; ,
| | - Haibin Wu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA;
| | - Vicki H Grassian
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA; ,
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA;
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
4
|
Das S, Agarwal DK, Mandal B, Rao VR, Kundu T. Detection of the Chilli Leaf Curl Virus Using an Attenuated Total Reflection-Mediated Localized Surface-Plasmon-Resonance-Based Optical Platform. ACS OMEGA 2021; 6:17413-17423. [PMID: 34278127 PMCID: PMC8280655 DOI: 10.1021/acsomega.1c01702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/09/2021] [Indexed: 05/16/2023]
Abstract
The development of a nanoparticle-based optical platform has been presented as a biosensor for detecting target-specific plant virus DNA. The binding dynamics of gold nanoparticles has been studied on the amine-functionalized surface by the attenuated total reflection (ATR)-based evanescent wave absorption method monitoring the localized surface plasmon resonance (LSPR). The developed surface was established as a refractive index sensor by monitoring the LSPR absorption peak of gold nanoparticles. This nanoparticle-immobilized surface was explored to establish as a biosensing platform with target-specific immunoglobulin (IgG) antibody-antigen interaction. The IgG concentration-dependent variation of absorbance was correlated with the refractive index change. After successfully establishing this ATR configuration as an LSPR-based biosensor, the single-stranded DNA of the chilli leaf curl virus was detected using its complementary DNA sequence as a receptor. The limit of detection of this sensor was determined to be 1.0 μg/mL for this target viral DNA. This ATR absorption technique has enormous potential as an LSPR based nano-biosensor for the detection of other begomoviruses.
Collapse
Affiliation(s)
- Sonatan Das
- Centre
for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dilip Kumar Agarwal
- Department
of Physics, Indian Institute of Technology
Bombay, Mumbai 400076, India
| | - Bikash Mandal
- Advanced
Centre for Plant Virology, Indian Agricultural
Research Institute, Pusa, New Delhi, Delhi 110012, India
| | - V. Ramgopal Rao
- Centre
for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai 400076, India
- Department
of Electrical Engineering, Indian Institute
of Technology Bombay, Mumbai 400076, India
| | - Tapanendu Kundu
- Centre
for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai 400076, India
- Department
of Physics, Indian Institute of Technology
Bombay, Mumbai 400076, India
| |
Collapse
|
5
|
de Alwis C, Perrine KA. In Situ PM-IRRAS at the Air/Electrolyte/Solid Interface Reveals Oxidation of Iron to Distinct Minerals. J Phys Chem A 2020; 124:6735-6744. [PMID: 32701285 DOI: 10.1021/acs.jpca.0c03592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iron interfaces undergo redox and catalytic processes in various environments, on the surface of soils, dust, minerals, and materials that comprise industrial infrastructure. Measuring reactions at interfaces in complex environments is challenging, where adsorption of gases and interaction of aqueous species occur at the surface. This is due to the presence of several ionic species in solutions that catalyze surface oxidation and undergo ion exchange between the solution and the surface and from the influx of oxygen and other gases. Corrosion is an electrochemical redox reaction that is affected by the presence of oxygen and water, but accelerated by dissolved ions. Polarized modulated-infrared reflection absorption spectroscopy was used to measure in situ surface oxidation at the air/electrolyte/iron interface in semineutral NaCl(aq) and acidic HCl(aq) solutions using the meniscus method under ambient conditions. The iron interface was exposed to air, primarily oxygen, allowing for surface oxidation, where metallic iron was found to transform to siderite in NaCl(aq) and lepidocrocite in HCl(aq). Mechanisms are suggested for the transformation of iron to these corrosion products, which significantly impact our understanding of redox processes in the water cycle, material degradation, and energy applications.
Collapse
Affiliation(s)
- Chathura de Alwis
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Kathryn A Perrine
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| |
Collapse
|