1
|
Chen S, Tang Q, Zeng Y, Yang Y, Zhu T, Wang H, Guo L, Li L, Qian Z. A novel fluorescence aptasensor based on PCN-223 as an efficient quencher for sensitive determination of prostate-specific antigen. Mikrochim Acta 2023; 190:70. [PMID: 36694049 DOI: 10.1007/s00604-023-05650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023]
Abstract
A novel fluorescence aptasensor based on PCN-223 as an efficient quencher was developed to sensitively detect prostate-specific antigen (PSA). The 5-carboxytetramethylrhodamine (TAMRA)-labeled PSA aptamer was adsorbed on PCN-223 by π-π stacking and hydrogen-bonding interactions, which contributed to fluorescence quenching because of the photoinduced electron transfer from TAMRA to PCN-223. In addition, the amount of quenched fluorescence of the PSA-binding aptamer complex-PCN-223 was lower than that of TAMRA aptamer-PCN-223 without PSA (at excitation/emission peaks of 545/582 nm), which can be explained by the fact that the PSA-binding aptamer complexes contributed to the separation of the aptamer from PCN-223. ∆F value of fluorescence intensities for TAMRA aptamer-PCN-223 with and without PSA showed a good linear relationship with PSA concentration over a range of 0.1 to 24 ng mL-1, with a detection limit of 0.05 ng mL-1. Compared with three metal-organic frameworks (MOFs) of UiO-66-NH2, ZIF-67, and Ni3(HITP)2 as quenchers, PCN-223 as a Zr-MOF exhibited the highest ∆F value for PSA detection. The advantage of PCN-223 could be attributed to its carboxyl, benzene, and porphyrin groups, the large specific surface area and good biocompatibility. This proposed aptasensor can be successfully used to detect PSA in sera of prostate cancer patients. The PSA detection results of this aptasensor were consistent with those which were obtained from hospital by Archtecti2000sr automatic chemiluminescence immunoanalyzer. The proposed aptasensor has potential clinical detection application.
Collapse
Affiliation(s)
- Shijie Chen
- School of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.,Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Qiukai Tang
- Clinical Laboratory of Zhejiang, Sian International Hospital, Jiaxing, 314000, People's Republic of China
| | - Yanbo Zeng
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| | - Yiwen Yang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Tianyi Zhu
- School of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.,Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Hailong Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Longhua Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| | - Zhaosheng Qian
- School of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| |
Collapse
|
2
|
Cui P, Ma L, Jiang P, Wang C, Wang J. PEG Gels Significantly Improve the Storage Stability of Nucleic Acid Preparations. Gels 2022; 8:gels8120819. [PMID: 36547343 PMCID: PMC9778030 DOI: 10.3390/gels8120819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Currently, nucleic acid preparations have gained much attention due to their unique working principle and application value. However, as macromolecular drugs, nucleic acid preparations have complex construction and poor stability. The current methods to promote stability face problems such as high cost and inconvenient operatios. In this study, the hydrophilic pharmaceutical excipient PEG was used to gelate nucleic acid preparations to avoid the random movements of liquid particles. The results showed that PEG gelation significantly improved the stability of PEI25K-based and liposome-based nucleic acid preparations, compared with nucleic acid preparations without PEG gelation. After being stored at 4 °C for 3 days, non-PEG gelled nucleic acid preparations almost lost transfection activity, while PEGylated preparations still maintained high transfection efficiency. Fluorescence experiments showed that this effect was caused by inhibiting particle aggregation. The method described in this study was simple and effective, and the materials used had good biocompatibility. It is believed that this study will contribute to the better development of gene therapy drugs.
Collapse
|
3
|
Zhang H, Han Y, Yang Y, Chen J, Qiu H. Construction of a Carbon Dots/Cobalt Oxyhydroxide Nanoflakes Biosensing Platform for Detection of Acid Phosphatase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10529-10537. [PMID: 34428054 DOI: 10.1021/acs.langmuir.1c01512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Because abnormal acid phosphatase (ACP) can disrupt the normal physiological processes, determination of ACP level is extremely important for early diagnosis, treatment, and prognostic evaluation of diseases. Herein, a fluorescence platform for monitoring ACP level was established based on the assembly of red-emitting carbon dots (RCDs) on cobalt oxyhydroxide (CoOOH) nanoflakes. RCDs displayed excellent water solubility, pH stability, salt resistance, and photobleaching resistance. Interestingly, the fluorescence of the RCDs assembled on the surface of the CoOOH nanoflakes could be quenched due to the energy transfer caused by the nanoflakes. However, the ascorbic acid (AA) produced by the hydrolysis of ascorbic acid-2-phosphate trisodium salt (AAP) catalyzed by ACP could quickly and effectively reduce CoOOH nanoflakes, leading to the fluorescence recovery of the RCDs. Therefore, an "off-on" biosensor platform for rapid, sensitive, and selective detection of ACP was constructed with a limit of detection of 0.25 mU/L. With the assistance of the biosensor, the level of ACP in human serum samples was evaluated, and the spike recovery values ranged from 94.0% to 104.5%.
Collapse
Affiliation(s)
- Haijuan Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yangxia Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yali Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
4
|
Chen ZJ, Huang Z, Huang S, Zhao JL, Sun Y, Xu ZL, Liu J. Effect of proteins on the oxidase-like activity of CeO2 nanozymes for immunoassays. Analyst 2021; 146:864-873. [DOI: 10.1039/d0an01755h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein adsorption inhibits the oxidase-like activity of CeO2 nanoparticles. Coating a partial shell of silica on CeO2 and subsequent conjugation of antibodies allow highly sensitive and selective detection of fenitrothion.
Collapse
Affiliation(s)
- Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety
- South China Agricultural University
- Guangzhou 510642
- China
- Department of Chemistry
| | - Zhicheng Huang
- Department of Chemistry
- Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| | - Song Huang
- Guangzhou Institute for Food Control
- Guangzhou 510410
- China
| | - Jin-Lin Zhao
- Guangzhou Institute for Food Control
- Guangzhou 510410
- China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety
- South China Agricultural University
- Guangzhou 510642
- China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety
- South China Agricultural University
- Guangzhou 510642
- China
| | - Juewen Liu
- Department of Chemistry
- Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| |
Collapse
|
5
|
Li C, Wang Y, Jiang H, Wang X. Biosensors Based on Advanced Sulfur-Containing Nanomaterials. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3488. [PMID: 32575665 PMCID: PMC7349518 DOI: 10.3390/s20123488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 01/03/2023]
Abstract
In recent years, sulfur-containing nanomaterials and their derivatives/composites have attracted much attention because of their important role in the field of biosensor, biolabeling, drug delivery and diagnostic imaging technology, which inspires us to compile this review. To focus on the relationships between advanced biomaterials and biosensors, this review describes the applications of various types of sulfur-containing nanomaterials in biosensors. We bring two types of sulfur-containing nanomaterials including metallic sulfide nanomaterials and sulfur-containing quantum dots, to discuss and summarize the possibility and application as biosensors based on the sulfur-containing nanomaterials. Finally, future perspective and challenges of biosensors based on sulfur-containing nanomaterials are briefly rendered.
Collapse
Affiliation(s)
| | | | | | - Xuemei Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (C.L.); (Y.W.); (H.J.)
| |
Collapse
|