1
|
Patil S, Mbonu C, Chou T, Li R, Wu D, Akcora P, Cheng S. Dynamics of poly(methyl acrylate)/poly(methyl methacrylate)-grafted-Fe 3O 4 nanocomposites. SOFT MATTER 2024; 20:7970-7982. [PMID: 39348039 DOI: 10.1039/d4sm00731j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
We investigated the dynamics of nanocomposites prepared through mixing poly(methyl methacrylate) grafted Fe3O4 nanoparticles (PMMA-g-Fe3O4) with poly(methyl acrylate) (PMA). A key feature here different from previous dynamics measurements of polymer nanocomposites is the different chemistry between the matrix polymer and the polymer grafts, which introduces chemical heterogeneity. Transmission electron microscopy shows clear evidence of nanoparticle clustering due to the poor miscibility between the bulk PMA and the bulk PMMA. At the same time, broadband dielectric spectroscopy measurements detect two leading relaxations, i.e. the α and α* processes, where the α process is associated with the bulk PMA and the α* process from the PMA interacting with the grafted PMMA in the nanoparticle clustering region. Interestingly, the characteristic time of α*, τα*, is slightly slower than that of the α, τα, at high temperatures, and exhibits near Arrhenius temperature dependence at low temperatures. As a result, τα* and τα cross each other in the activation plot upon cooling and τα* ≪ τα is observed at temperatures approaching the glass transition temperature of PMA. These observations suggest the presence of component dynamics and the dynamics confinement effect between PMA and PMMA in the nanoparticle clustering region, highlighting an active interaction between PMA and PMMA at the interface despite their poor miscibility. These results thus suggest new routes to control interface dynamics through immiscible polymer pairs.
Collapse
Affiliation(s)
- Shalin Patil
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA.
| | - Christopher Mbonu
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
| | - Tsengming Chou
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
| | - Ruhao Li
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
| | - Di Wu
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
| | - Pinar Akcora
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
| | - Shiwang Cheng
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA.
| |
Collapse
|
2
|
Zhao M, Wu HM, Chen H, Lai GH, Zhu Z, Wu JL, Kang WH, Sue HJ. Preparation of Polyethylene/α-Zirconium Phosphate Nanocomposites via a Well-Controlled Polyethylene-Grafted Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5803-5813. [PMID: 37053455 PMCID: PMC10853957 DOI: 10.1021/acs.langmuir.3c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/31/2023] [Indexed: 06/19/2023]
Abstract
It is a daunting task to prepare polyolefin nanocomposites that contain well-exfoliated nanoplatelets due to the nonpolar and high crystallinity nature of polyolefins. In this research, a robust approach was developed to prepare polyethylene (PE) nanocomposites by grafting maleated polyethylene (MPE) onto pre-exfoliated α-zirconium phosphate (ZrP) nanoplatelets via a simple amine-anhydride reaction to form ZrP-g-MPE. Several variables, including maleic anhydride (MA) content, MPE graft density, MPE molecular weight, and PE matrix crystallinity, were investigated to determine how they influence ZrP-g-MPE dispersion in PE. It was found that grafted PE has a different morphology and that the long PE brushes with medium graft density on ZrP can achieve sufficient chain entanglement and cocrystallization with PE matrix to stabilize and maintain ZrP-g-MPE dispersion after solution or melt mixing. This leads to enhanced Young's modulus, yield stress, and ductility. The structure-property relationship of PE/ZrP-g-MPE nanocomposites and usefulness of this study for the preparation of high-performance polyolefin nanocomposites are discussed.
Collapse
Affiliation(s)
- Mingzhen Zhao
- Department
of Material Science and Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Hong-Mao Wu
- Polyolefin
Department of Formosa Plastics Corporation, Yunlin County 63801, Taiwan
| | - Hengxi Chen
- Department
of Material Science and Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Guan-Hui Lai
- Department
of Material Science and Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Zewen Zhu
- Department
of Material Science and Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Jen-Long Wu
- Polyolefin
Department of Formosa Plastics Corporation, Yunlin County 63801, Taiwan
| | - Wen-Hao Kang
- Polyolefin
Department of Formosa Plastics Corporation, Yunlin County 63801, Taiwan
| | - Hung-Jue Sue
- Department
of Material Science and Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
3
|
Rationalizing the interfacial layer in polymer nanocomposites: Correlation between enthalpy and dielectric relaxation. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
4
|
Zhao M, Chen H, Zhu Z, Zhu X, Quan Y, Zhang Z, Wu HM, Wu JL, Kang WH, Wang Q, Sue HJ. Multifunctional polyethylene nanocomposites based on polyethylene-grafted α-zirconium phosphate nanoplatelets. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Zhao P, Du T, Ma N, Dong X, Qi M. Effect of interfacial shear strength between magnetic particles and carrier liquid on rheological properties of magnetorheological fluids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
6
|
Ma M, Cui W, Guo Y, Yu W. Adsorption-desorption effect on physical aging in PMMA-silica nanocomposite. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Chen Y, Xu H, Ma Y, Liu J, Zhang L. Diffusion of polymer-grafted nanoparticles with dynamical fluctuations in unentangled polymer melts. Phys Chem Chem Phys 2022; 24:11322-11335. [PMID: 35485911 DOI: 10.1039/d2cp00002d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The dynamics of polymer-grafted nanoparticles (PGNPs) in melts of unentangled linear chains were investigated by means of coarse-grained molecular dynamics simulations. The results demonstrated that the graft monomers closer to the particle surface relax more slowly than those farther away due to the constraint of the grafted surface and the confinement of the neighboring chains. Such heterogeneous relaxations of the surrounding environment would perturb the particle motion, making them fluctuating around their centers before they can diffuse through the melt. During such intermediate-time stage, the dynamics is subdiffusive while the distribution of particle displacements is Gaussian, which can be described by the popular fractional Brownian motion model. For the long-time Fickian diffusion, we found that the diffusivity D decreases with increasing grafting density Σg, grafted chain length Ng, and matrix chain length Nm. This is due to the fact that the diffusivity is controlled by the viscous drag of an effective core, consisting of the NP and the non-draining layer of graft segments, and that of the free-draining graft layer outside the "core". With increasing Σg, the PGNPs become harder with greater effective size and thinner free draining layer, resulting in a reduction in D. At extremely high Σg, the diffusivity can even be estimated by the diameter-renormalized Stokes-Einstein (SE) relation. With increasing Ng, both the effective core size and the thickness of the free-draining layer increase, leading to a reduction in diffusivity by D ∼ N-γg with 0.5 < γ < 1. Increasing Nm would lead to the enlargement of the effective core size but meanwhile result in the reduction of the free-draining layer thickness due to autophobic dewetting. The counteraction between these two opposite effects leads to only a slight reduction in the diffusivity, significantly different from the typical SE behavior where D ∼ Nm-1. These findings bear significance in unraveling the fundamental physics of the anomalous dynamics of PGNPs in various polymers, including biological and synthetic.
Collapse
Affiliation(s)
- Yulong Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Haohao Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yangwei Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
8
|
Zhao M, Wu HM, Zhu Z, Wu JL, Kang WH, Sue HJ. Preparation of Polyethylene Nanocomposites Based on Polyethylene Grafted Exfoliated α-Zirconium Phosphate. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mingzhen Zhao
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Hong-Mao Wu
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
- Polyolefin Department, Formosa Plastics Corporation, Mailiao, Yunlin County 63801, Taiwan
| | - Zewen Zhu
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Jen-Long Wu
- Polyolefin Department, Formosa Plastics Corporation, Mailiao, Yunlin County 63801, Taiwan
| | - Wen-Hao Kang
- Polyolefin Department, Formosa Plastics Corporation, Mailiao, Yunlin County 63801, Taiwan
| | - Hung-Jue Sue
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
9
|
Molero G, Liu C, Zhu Z, Chen Q, Peterson SR, Kolluru PV, Sue HJ, Uenuma S, Mayumi K, Ito K. Fracture Behavior of Polyrotaxane-Toughened Poly(Methyl Methacrylate). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2335-2345. [PMID: 35129976 DOI: 10.1021/acs.langmuir.1c03216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The fracture behavior of polyrotaxane (PR)-modified poly(methyl methacrylate) (PMMA) was investigated. PR is a supramolecule with rings threaded onto a linear backbone chain, which is capped by bulky end groups to prevent the rings from de-threading. The ring structure is α-cyclodextrin (CD), and it can be functionalized to enhance its affinity with the hosting polymer matrix. Adding only 1 wt % of PR containing methacrylate functional groups (mPR) at the terminal of some of the polycaprolactone-grafted chains on CD promotes massive crazing, resulting in a significant improvement in fracture toughness while maintaining the modulus and transparency of the PMMA matrix. Dynamic mechanical analysis and atomic force microscopy studies reveal that mPR strongly interact with PMMA, leading to higher molecular mobility and enhanced molecular cooperativity during deformation. This molecular cooperativity may be responsible for the formation of massive crazing in a PMMA matrix, which leads to greatly improved fracture toughness.
Collapse
Affiliation(s)
- Glendimar Molero
- Department of Materials Science and Engineering, Polymer Technology Center, Texas A&M University, College Station, Texas 77843, United States
| | - Cong Liu
- Department of Materials Science and Engineering, Polymer Technology Center, Texas A&M University, College Station, Texas 77843, United States
| | - Zewen Zhu
- Department of Materials Science and Engineering, Polymer Technology Center, Texas A&M University, College Station, Texas 77843, United States
| | - Qihui Chen
- Department of Materials Science and Engineering, Polymer Technology Center, Texas A&M University, College Station, Texas 77843, United States
| | - Suzanne R Peterson
- Department of Materials Science and Engineering, Polymer Technology Center, Texas A&M University, College Station, Texas 77843, United States
| | - Pavan V Kolluru
- Department of Materials Science and Engineering, Polymer Technology Center, Texas A&M University, College Station, Texas 77843, United States
| | - Hung-Jue Sue
- Department of Materials Science and Engineering, Polymer Technology Center, Texas A&M University, College Station, Texas 77843, United States
| | - Shuntaro Uenuma
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba 227-8561, Japan
| | - Koichi Mayumi
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba 227-8561, Japan
| | - Kohzo Ito
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba 227-8561, Japan
| |
Collapse
|
10
|
Zhu Z, Tsai CY, Zhao M, Baker J, Sue HJ. PMMA Nanocomposites Based on PMMA-Grafted α-Zirconium Phosphate Nanoplatelets. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zewen Zhu
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| | - Chia-Ying Tsai
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| | - Mingzhen Zhao
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| | - Joseph Baker
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| | - Hung-Jue Sue
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| |
Collapse
|
11
|
Molero G, Tsai C, Liu C, Sue H, Uenuma S, Mayumi K, Ito K. Mechanical and scratch behaviors of
polyrotaxane‐modified
poly(methyl methacrylate). J Appl Polym Sci 2021. [DOI: 10.1002/app.51237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Glendimar Molero
- Department of Materials Science and Engineering Polymer Technology Center, Texas A&M University College Station Texas USA
| | - Chia‐Ying Tsai
- Department of Materials Science and Engineering Polymer Technology Center, Texas A&M University College Station Texas USA
| | - Cong Liu
- Department of Materials Science and Engineering Polymer Technology Center, Texas A&M University College Station Texas USA
| | - Hung‐Jue Sue
- Department of Materials Science and Engineering Polymer Technology Center, Texas A&M University College Station Texas USA
| | - Shuntaro Uenuma
- Department of Advanced Materials Science, Graduate School of Frontier Sciences The University of Tokyo Chiba Japan
| | - Koichi Mayumi
- Department of Advanced Materials Science, Graduate School of Frontier Sciences The University of Tokyo Chiba Japan
| | - Kohzo Ito
- Department of Advanced Materials Science, Graduate School of Frontier Sciences The University of Tokyo Chiba Japan
| |
Collapse
|
12
|
Winkler R, Beena Unni A, Tu W, Chat K, Adrjanowicz K. On the Segmental Dynamics and the Glass Transition Behavior of Poly(2-vinylpyridine) in One- and Two-Dimensional Nanometric Confinement. J Phys Chem B 2021; 125:5991-6003. [PMID: 34048244 PMCID: PMC8279553 DOI: 10.1021/acs.jpcb.1c01245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/13/2021] [Indexed: 11/30/2022]
Abstract
Geometric nanoconfinement, in one and two dimensions, has a fundamental influence on the segmental dynamics of polymer glass-formers and can be markedly different from that observed in the bulk state. In this work, with the use of dielectric spectroscopy, we have investigated the glass transition behavior of poly(2-vinylpyridine) (P2VP) confined within alumina nanopores and prepared as a thin film supported on a silicon substrate. P2VP is known to exhibit strong, attractive interactions with confining surfaces due to the ability to form hydrogen bonds. Obtained results show no changes in the temperature evolution of the α-relaxation time in nanopores down to 20 nm size and 24 nm thin film. There is also no evidence of an out-of-equilibrium behavior observed for other glass-forming systems confined at the nanoscale. Nevertheless, in both cases, the confinement effect is seen as a substantial broadening of the α-relaxation time distribution. We discussed the results in terms of the importance of the interfacial energy between the polymer and various substrates, the sensitivity of the glass-transition temperature to density fluctuations, and the density scaling concept.
Collapse
Affiliation(s)
- Roksana Winkler
- Institute
of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Aparna Beena Unni
- Institute
of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Wenkang Tu
- Institute
of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Katarzyna Chat
- Institute
of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Karolina Adrjanowicz
- Institute
of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| |
Collapse
|
13
|
Mapesa EU, Cantillo NM, Hamilton ST, Harris MA, Zawodzinski TA, Alissa Park AH, Sangoro J. Localized and Collective Dynamics in Liquid-like Polyethylenimine-Based Nanoparticle Organic Hybrid Materials. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Emmanuel Urandu Mapesa
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200, United States
| | - Nelly M. Cantillo
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200, United States
| | - Sara T. Hamilton
- Department of Earth and Environmental Engineering, Department of Chemical Engineering, Lenfest Center for Sustainable Energy, Columbia University, New York, New York 10027-6699, United States
| | - Matthew A. Harris
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200, United States
| | - Thomas A. Zawodzinski
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200, United States
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ah-Hyung Alissa Park
- Department of Earth and Environmental Engineering, Department of Chemical Engineering, Lenfest Center for Sustainable Energy, Columbia University, New York, New York 10027-6699, United States
| | - Joshua Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200, United States
| |
Collapse
|
14
|
Abstract
The molecular structure of bound layers at attractive polymer-nanoparticle interfaces strongly influences the properties of nanocomposites. Thus, a unifying theoretical framework that can provide insights into the correlations between the molecular structure of the bound layers, their thermodynamics, and macroscopic properties is highly desirable. In this work, molecular dynamics simulations were used in combination with local fingerprint analysis of configurational entropy and interaction energy at the segmental scale, with the goal to establish such physical grounds. The thickness of bound polymer layers is found to be independent of the polymer chain length, as deduced from density oscillations at the surface of a nanotube. The local configurational entropy of layers is estimated from pair correlations in equilibrium structures. By plotting mean layer entropy vs internal energy on a phase diagram, a one-to-one equivalence is established between the local structures of layers and their thermodynamic properties. Moreover, a gradient in local dynamics of segments in bound layers under equilibrium is observed normal to the nanoparticle surface. The relaxation times of individual layers show correspondence to their phase diagram fingerprints, thus suggesting that a unified perspective can be envisioned for such materials built on the grounds of locally heterogeneous interfaces.
Collapse
Affiliation(s)
- Ali Gooneie
- Laboratory of Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| |
Collapse
|
15
|
Mapesa EU, Shahidi N, Kremer F, Doxastakis M, Sangoro J. Interfacial Dynamics in Supported Ultrathin Polymer Films-From the Solid to the Free Interface. J Phys Chem Lett 2021; 12:117-125. [PMID: 33307705 DOI: 10.1021/acs.jpclett.0c03211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Molecular dynamics in ultrathin layers is investigated using nanostructured electrodes to perform broadband dielectric spectroscopy measurements, and by atomistic molecular dynamics simulations. Using poly(vinyl acetate) as the model system and taking advantage of access to the distribution of relaxation times in an extended temperature range above the glass transition temperature, Tg, we demonstrate that while the mean rates of the segmental relaxation remain bulklike down to 12 nm film thickness, modified molecular mobilities arise in the interfacial zones. Combining results from simulations and experiments, we show unambiguously that both the slow relaxations arising from adsorbed polymer segments and the faster modes attributed to segments in the vicinity of the free interface have non-Arrhenius temperature activation. These interfacial regions span thicknesses of ∼1.5 nm each just above the calorimetric Tg independent of molecular weight and film thickness. These deviations at interfaces are relevant for applications of polymers in adhesion, coatings, and polymer nanocomposites.
Collapse
Affiliation(s)
- Emmanuel Urandu Mapesa
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, 1512 Middle Drive, Knoxville, Tennessee 37996, United States
| | - Nobahar Shahidi
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, 1512 Middle Drive, Knoxville, Tennessee 37996, United States
| | - Friedrich Kremer
- Department of Molecular Physics, Peter Debye Institute of Soft Matter Physics, University of Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
| | - Manolis Doxastakis
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, 1512 Middle Drive, Knoxville, Tennessee 37996, United States
| | - Joshua Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, 1512 Middle Drive, Knoxville, Tennessee 37996, United States
| |
Collapse
|
16
|
You W, Cui W, Yu W. Decoupling hydrodynamic and entanglement effects on the modulus reinforcement of grafted silica filled nanocomposites through Thermal and rheological features. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|