1
|
Bandelli D, Mastrangelo R, Poggi G, Chelazzi D, Baglioni P. New sustainable polymers and oligomers for Cultural Heritage conservation. Chem Sci 2024; 15:2443-2455. [PMID: 38362426 PMCID: PMC10866357 DOI: 10.1039/d3sc03909a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
The development of "green" chemistry materials with enhanced properties is a central topic in numerous applicative fields, including the design of polymeric systems for the conservation of works of art. Traditional approaches in art restoration comprise polymer thickeners and viscous dispersions to partially control solvents in the removal of soil or aged varnishes/coatings from artifacts. Alternatively, polymeric gel networks can be specifically designed to grant full control of the cleaning action, yielding safe, time- and cost-effective restorations. The selection of polymers and oligomers in gel design is crucial to tune solvent upload, retention, and controlled release over the sensitive artistic surfaces. Starting from an overview of traditional polymer formulations and state-of-the-art gel systems for cleaning works of art, we provide here the design of a new class of gels, focusing on the selection of oligomers to achieve gels with tailored hydrophilicity/hydrophobicity. We evaluated the oligomers Hydrophilic-Lipophilic Balance (HLB) by developing, for the first time, a novel methodology combining SEC and DOSY NMR analysis, which was tested on a library of "green" oligoesters synthesized by polycondensation and poorly explored in the literature. Oligomers with moderate polydispersity were chosen to validate the new protocol as a robust tool for designing polymeric gels even on industrial scale. The methodology is more time-effective than traditional methods, and gives additional insights on the oligomers physico-chemical nature, evaluating their compatibility with different solvents. Then, we used the selected oligoesters with castor oil to obtain a new class of organogels able to upload solvents with varying polarity, which effectively removed different types of unwanted layers typically found in painting restoration. These results validate the oligomers screening approach and the new class of gels as promising chemical processes/materials in art preservation. The methodology can potentially allow evaluation of HLB also for small molecules (e.g., surfactants), opening for the formulation of polymers solutions/gels beyond Cultural Heritage conservation, as in pharmaceutics, cosmetics, food industry, tissue engineering, agriculture, and others.
Collapse
Affiliation(s)
- Damiano Bandelli
- Department of Chemistry "Ugo Schiff", University of Florence via della Lastruccia 3, Sesto Fiorentino 50019 Florence Italy
| | - Rosangela Mastrangelo
- Department of Chemistry "Ugo Schiff", University of Florence via della Lastruccia 3, Sesto Fiorentino 50019 Florence Italy
| | - Giovanna Poggi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence via della Lastruccia 3, Sesto Fiorentino 50019 Florence Italy
| | - David Chelazzi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence via della Lastruccia 3, Sesto Fiorentino 50019 Florence Italy
| | - Piero Baglioni
- CSGI and Department of Chemistry "Ugo Schiff", University of Florence via della Lastruccia 3, Sesto Fiorentino 50019 Florence Italy
| |
Collapse
|
2
|
Jiang H, Li Z, Dai Y, Ling Y, Mei S, Wang H, Mou Z. Synthesis of Poly(δ-caprolactone) via Bis(phenolate) Rare-Earth Metal Complexes Mediated Ring-Opening Polymerization and Its Chemical Recycling. Inorg Chem 2024; 63:441-450. [PMID: 38149999 DOI: 10.1021/acs.inorgchem.3c03298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
New amine-amino-bis(phenolate) ligands (H2LtBu and H2LCl) with a cyclic tertiary amine (pyrrolidine) as a side arm and tBu or Cl group on the phenolate ring have been prepared. The alkane elimination reaction between these free ligands and rare-earth tris(alkyl)s Ln(CH2SiMe3)3(THF)2 afforded the corresponding silylalkyl complexes LtBuLnCH2SiMe3(THF) (Ln = Y (1), Lu (2)) and LClYCH2SiMe3(THF) (3), where the solid-state structure of complex 1 was unambiguously confirmed by X-ray diffraction (XRD) analysis. These rare-earth metal complexes have been utilized as catalysts for the ring-opening polymerization (ROP) of biobased δ-caprolactone (δCL), either in the absence or presence of alcohols, to give poly(δ-caprolactone) (PδCL) with controlled molecular weight and narrow distribution (Đ < 1.2). The polymerization kinetics of δCL in toluene with yttrium complexes 1 and 3 were investigated. Oligomers prepared with complex 3 alone and the 3/PhCHMeOH binary catalyst system were well characterized with 1H NMR spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS). Moreover, chemical recycling of the resultant PδCL was achieved with high yield in a solution at ambient temperature (>92%) or in bulk at 130 °C (>82%) by using commercial KOtBu as a promotor.
Collapse
Affiliation(s)
- Hao Jiang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Zhiyuan Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yanan Dai
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yidong Ling
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Shiqing Mei
- School of Biology and Chemical Engineering, Jiaxing University, Jiaxing 314000, Zhejiang, China
| | - Huifei Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118 China
| | - Zehuai Mou
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
3
|
Obisesan OS, Ajiboye TO, Mhlanga SD, Mufhandu HT. Biomedical applications of biodegradable polycaprolactone-functionalized magnetic iron oxides nanoparticles and their polymer nanocomposites. Colloids Surf B Biointerfaces 2023; 227:113342. [PMID: 37224613 DOI: 10.1016/j.colsurfb.2023.113342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/29/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
Magnetic nanoparticles (MNPs) have gained significant attention among several nanoscale materials during the last decade due to their unique properties. These properties make them successful nanofillers for drug delivery and a number of new biomedical applications. MNPs are more useful when combined with biodegradable polymers. In this review, we discussed the synthesis of polycaprolactones (PCL) and the various methods of synthesizing magnetic iron oxide nanoparticles. Then, the synthesis of composites that is made of PCL and magnetic materials (with special focus on iron oxide nanoparticles) were highlighted. In addition, we comprehensively reviewed their application in drug delivery, cancer treatment, wound healing, hyperthermia, and bone tissue engineering. Other biomedical applications of the magnetic PCL such as mitochondria targeting are highlighted. Moreover, biomedical applications of magnetic nanoparticles incorporated into other synthetic polymers apart from PCL are also discussed. Thus, great progress and better outcome with functionalized MNPs enhanced with polycaprolactone has been recorded with the biomedical applications of drug delivery and recovery of bone tissues.
Collapse
Affiliation(s)
| | - Timothy O Ajiboye
- Chemistry Department, Nelson Mandela University, University Way, Summerstrand, 6031, Gqeberha, South Africa.
| | - Sabelo D Mhlanga
- Chemistry Department, Nelson Mandela University, University Way, Summerstrand, 6031, Gqeberha, South Africa
| | - Hazel T Mufhandu
- Department of Microbiology, North-West University, Mafikeng, South Africa.
| |
Collapse
|
4
|
Yan Q, Li C, Yan T, Shen Y, Li Z. Chemically Recyclable Thermoplastic Polyurethane Elastomers via a Cascade Ring-Opening and Step-Growth Polymerization Strategy from Bio-renewable δ-Caprolactone. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00439] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qin Yan
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Changjian Li
- State Key Laboratory Base of Eco-Chemical Engineering; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ting Yan
- State Key Laboratory Base of Eco-Chemical Engineering; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yong Shen
- State Key Laboratory Base of Eco-Chemical Engineering; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory Base of Eco-Chemical Engineering; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
5
|
KAYSER F, Fleury G, thongkham S, Navarro C, Martin-Vaca B, Bourissou D. Reducing the crystallinity of PCL chains by copolymerization with substituted δ/ε-lactones and its impact on the phase separation of PCL-based block copolymers. Polym Chem 2022. [DOI: 10.1039/d2py00101b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various substituted δ/ε-lactones have been copolymerized with ε-caprolactone (ε-CL) with the aim to inhibit the crystallization of polycaprolactone (PCL). Among the studied co-monomers, the best results were obtained with the...
Collapse
|
6
|
Vollrath A, Kretzer C, Beringer-Siemers B, Shkodra B, Czaplewska JA, Bandelli D, Stumpf S, Hoeppener S, Weber C, Werz O, Schubert US. Effect of Crystallinity on the Properties of Polycaprolactone Nanoparticles Containing the Dual FLAP/mPEGS-1 Inhibitor BRP-187. Polymers (Basel) 2021; 13:2557. [PMID: 34372160 PMCID: PMC8347491 DOI: 10.3390/polym13152557] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Seven polycaprolactones (PCL) with constant hydrophobicity but a varying degree of crystallinity prepared from the constitutional isomers ε-caprolactone (εCL) and δ-caprolactone (δCL) were utilized to formulate nanoparticles (NPs). The aim was to investigate the effect of the crystallinity of the bulk polymers on the enzymatic degradation of the particles. Furthermore, their efficiency to encapsulate the hydrophobic anti-inflammatory drug BRP-187 and the final in vitro performance of the resulting NPs were evaluated. Initially, high-throughput nanoprecipitation was employed for the εCL and δCL homopolymers to screen and establish important formulation parameters (organic solvent, polymer and surfactant concentration). Next, BRP-187-loaded PCL nanoparticles were prepared by batch nanoprecipitation and characterized using dynamic light scattering, scanning electron microscopy and UV-Vis spectroscopy to determine and to compare particle size, polydispersity, zeta potential, drug loading as well as the apparent enzymatic degradation as a function of the copolymer composition. Ultimately, NPs were examined for their potency in vitro in human polymorphonuclear leukocytes to inhibit the BRP-187 target 5-lipoxygenase-activating protein (FLAP). It was evident by Tukey's multi-comparison test that the degree of crystallinity of copolymers directly influenced their apparent enzymatic degradation and consequently their efficiency to inhibit the drug target.
Collapse
Affiliation(s)
- Antje Vollrath
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
| | - Christian Kretzer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany;
| | - Baerbel Beringer-Siemers
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
| | - Blerina Shkodra
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
| | - Justyna A. Czaplewska
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
| | - Damiano Bandelli
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
| | - Steffi Stumpf
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
| | - Stephanie Hoeppener
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
| | - Christine Weber
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
| | - Oliver Werz
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany;
| | - Ulrich S. Schubert
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany; (A.V.); (B.B.-S.); (B.S.); (J.A.C.); (D.B.); (S.S.); (S.H.); (C.W.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany;
| |
Collapse
|
7
|
Shen H, Liu Q, Liu D, Yu S, Wang X, Yang M. Fabrication of doxorubicin conjugated methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) nanoparticles and study on their in vitro antitumor activities. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1703-1717. [PMID: 34075850 DOI: 10.1080/09205063.2021.1937462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The purpose of this study was to develop a novel drug-polymer conjugation (mPEG-b-PCL-DOX) and study on its toxicity, bio-safety, and in vitro antitumor activity of mPEG-b-PCL-DOX. The polymer methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-b-PCL) was prepared by ring-opening polymerization. Then, succinic anhydride was reacted with mPEG-b-PCL via esterification reaction to produce mPEG-b-PCL-COOH. Finally, the polymer mPEG-b-PCL-DOX was obtained by conjugating DOX to mPEG-b-PCL-COOH by amidation. The Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance (1H NMR) spectra were used to study the structures of obtained polymers. Transmission electron microscope (TEM) and Dynamic laser scattering (DLS) were employed to monitor the morphology and size distribution of mPEG-b-PCL-DOX nanoparticles (NPs). The mPEG-b-PCL-DOX NPs were administrated to KM rats by intraperitoneal injection to study the bio-safety of final NPs. The cell uptake and in vitro anti-tumor activity of final NPs were carried out with HCT116 cells as models. FTIR and 1H NMR spectra confirmed the obtaining of mPEG-b-PCL-DOX. The fabricated NPs were in round shapes with an average diameter of 300 nm. These NPs did not induce hemolysis and physiological or pathological changes in rats's organs. Finally, cell teats showed that these NPs could be endocytosed by HCT 116 cells, and they had better anti-tumor effects than free DOX did. Therefore, the mPEG-b-PCL-DOX NPs had a potential application in anti-cancer therapy.
Collapse
Affiliation(s)
- Hongdan Shen
- Yancheng Industry Vocational Technology College, Yancheng, Jiangsu, China
| | - Quan Liu
- Xinxiang Medical University, Xinxiang, China
| | - Deju Liu
- Yancheng Industry Vocational Technology College, Yancheng, Jiangsu, China
| | - Shasha Yu
- Xinxiang Medical University, Xinxiang, China
| | - Xiao Wang
- Xinxiang Medical University, Xinxiang, China
| | - Mingbo Yang
- Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
8
|
Göppert NE, Dirauf M, Weber C, Schubert US. Block copolymers comprising degradable poly(2-ethyl-2-oxazoline) analogues via copper-free click chemistry. Polym Chem 2021. [DOI: 10.1039/d1py00853f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We present the synthesis development of amphiphilic, degradable poly(2-ethyl-2-oxazoline) (PEtOx) analogue block copolymers in a modular fashion utilizing the strain-promoted azide–alkyne cycloaddition (SPAAC).
Collapse
Affiliation(s)
- Natalie E. Göppert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Michael Dirauf
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|