1
|
Chee CH, Benharush R, Knight LR, Laaser JE. Segregative phase separation of strong polyelectrolyte complexes at high salt and high polymer concentrations. SOFT MATTER 2024; 20:8505-8514. [PMID: 39415735 DOI: 10.1039/d4sm00994k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The phase behavior of polyelectrolyte complexes and coacervates (PECs) at low salt concentrations has been well characterized, but their behavior at concentrations well above the binodal is not well understood. Here, we investigate the phase behavior of stoichiometric poly(styrene sulfonate)/poly(diallyldimethylammonium) mixtures at high salt and high polymer concentrations. Samples were prepared by direct mixing of PSS/PDADMA PECs, water, and salt (KBr). Phase separation was observed at salt concentrations approximately 1 M above the binodal. Characterization by thermogravimetric analysis, FTIR, and NMR revealed that both phases contained significant amounts of polymer, and that the polymer-rich phase was enriched in PSS, while the polymer-poor phase was enriched in PDADMA. These results suggest that high salt concentrations drive salting out of the more hydrophobic polyelectrolyte (PSS), consistent with behavior observed in weak polyelectrolyte systems. Interestingly, at the highest salt and polymer concentrations studied, the polymer-rich phase contained both PSS and PDADMA, suggesting that high salt concentrations can drive salting out of partially-neutralized complexes as well. Characterization of the behavior of PECs in the high concentration limit appears to be a fruitful avenue for deepening fundamental understanding of the molecular-scale factors driving phase separation in these systems.
Collapse
Affiliation(s)
- Conner H Chee
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, PA, USA.
| | - Rotem Benharush
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, PA, USA.
| | - Lexi R Knight
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, PA, USA.
| | - Jennifer E Laaser
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Guo X, Farag M, Qian N, Yu X, Ni A, Ma Y, Yu W, King MR, Liu V, Lee J, Zare RN, Min W, Pappu RV, Dai Y. Biomolecular condensates can function as inherent catalysts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602359. [PMID: 39026887 PMCID: PMC11257451 DOI: 10.1101/2024.07.06.602359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
We report the discovery that chemical reactions such as ATP hydrolysis can be catalyzed by condensates formed by intrinsically disordered proteins (IDPs), which themselves lack any intrinsic ability to function as enzymes. This inherent catalytic feature of condensates derives from the electrochemical environments and the electric fields at interfaces that are direct consequences of phase separation. The condensates we studied were capable of catalyzing diverse hydrolysis reactions, including hydrolysis and radical-dependent breakdown of ATP whereby ATP fully decomposes to adenine and multiple carbohydrates. This distinguishes condensates from naturally occurring ATPases, which can only catalyze the dephosphorylation of ATP. Interphase and interfacial properties of condensates can be tuned via sequence design, thus enabling control over catalysis through sequence-dependent electrochemical features of condensates. Incorporation of hydrolase-like synthetic condensates into live cells enables activation of transcriptional circuits that depend on products of hydrolysis reactions. Inherent catalytic functions of condensates, which are emergent consequences of phase separation, are likely to affect metabolic regulation in cells.
Collapse
Affiliation(s)
- Xiao Guo
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Mina Farag
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Naixin Qian
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Xia Yu
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Anton Ni
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Yuefeng Ma
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Wen Yu
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Matthew R. King
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Vicky Liu
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Joonho Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Rohit V. Pappu
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Yifan Dai
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
3
|
Ghasemi M, Jamadagni SN, Johnson ES, Larson RG. A Molecular Thermodynamic Model of Coacervation in Solutions of Polycations and Oppositely Charged Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10335-10351. [PMID: 37469275 DOI: 10.1021/acs.langmuir.3c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
To guide the rational design of personal care formulations, we formulate a molecular thermodynamic model that predicts coacervation from cationic polymers and mixed micelles containing neutral and anionic surfactants and added salt. These coacervates, which form as a result of dilution of conditioning shampoos during use, deposit conditioning agents and other actives to the scalp or skin and also provide lubrication benefits. Our model accounts for mixing entropy, hydrophobic interactions of polycation with water, free energies of bindings of oppositely charged groups to micelles and polycations, and electrostatic interactions that capture connectivity of charged groups on the polycation chain and the micelle. The model outputs are the compositions of surfactants, polycation, salt, and water in the coacervate and in its coexisting dilute phase, along with the binding fractions and coacervate volume fraction. We study the effects of overall composition (of surfactant, polycation, and added salt), charge fractions on micelles and polycations, and binding free energies on the phase diagram of coacervates. Then, we perform coacervation experiments for three systems: sodium dodecyl sulfate (SDS)-JR30M, sodium methyl cocoyl taurate (Taurate)-JR30M, and sodium lauryl alaninate (Alaninate)-JR30M, where JR30M is a cationic derivative of hydroxyethylcellulose (cat-HEC), and rationalize their coacervation data using our model. For comparison with experiment, we also develop a parametrization scheme to obtain the requisite binding energies and Flory-Huggins χ parameter. We find that our model predictions agree reasonably well with the experimental data, and that the sulfate-free surfactants of Taurate and Alaninate display much larger 2-phase regions compared to SDS with JR30M.
Collapse
Affiliation(s)
- Mohsen Ghasemi
- The Procter & Gamble Company, Mason, Ohio 45040, United States
| | | | - Eric S Johnson
- The Procter & Gamble Company, Mason, Ohio 45040, United States
| | - Ronald G Larson
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Okuno Y, Nishimura T, Sasaki Y, Akiyoshi K. Glycopeptoid nanospheres: glycosylation-induced coacervation of poly(sarcosine). NANOSCALE ADVANCES 2022; 4:3707-3710. [PMID: 36133351 PMCID: PMC9470024 DOI: 10.1039/d2na00218c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/25/2022] [Indexed: 06/16/2023]
Abstract
Conjugation of maltopentaose to water-soluble homo-poly(sarcosine) induced self-association and formed nanospheres (-150 nm) in water although homo-poly(sarcosine) was water-soluble and did not form any aggregates. Fluorescent probe experiments showed that the spheres were non-ionic glycopeptoid coacervate-like particles with both hydrophobic and hydrophilic domains inside.
Collapse
Affiliation(s)
- Yota Okuno
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Kyoto Daigaku-Katsura, Nishikyo-ku Kyoto 615-8510 Japan
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamanote-cho Suita City Osaka Japan
| | - Tomoki Nishimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida Nagano 386-8567 Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Kyoto Daigaku-Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Kyoto Daigaku-Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
5
|
Yang M, Sonawane SL, Digby ZA, Park JG, Schlenoff JB. Influence of “Hydrophobicity” on the Composition and Dynamics of Polyelectrolyte Complex Coacervates. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mo Yang
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Swapnil L. Sonawane
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Zachary A. Digby
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Jin G. Park
- High Performance Materials Institute, The Florida State University, Tallahassee Florida 32310, United States
| | - Joseph B. Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
6
|
Zhang P, Wang ZG. Supernatant Phase in Polyelectrolyte Complex Coacervation: Cluster Formation, Binodal, and Nucleation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pengfei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
7
|
Wessén J, Pal T, Chan HS. Field theory description of ion association in re-entrant phase separation of polyampholytes. J Chem Phys 2022; 156:194903. [DOI: 10.1063/5.0088326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phase separation of several different overall neutral polyampholyte species (with zero net charge) is studied in solution with two oppositely charged ion species that can form ion-pairs through an association reaction. A field theory description of the system, that treats polyampholyte charge sequence dependent electrostatic interactions as well as excluded volume effects, is hereby given. Interestingly, analysis of the model using random phase approximation and field theoretic simulation consistently show evidence of a re-entrant polyampholyte phase separation at high ion concentrations when there is an overall decrease of volume upon ion-association. As an illustration of the ramifications of our theoretical framework, several polyampholyte concentration vs ion concentration phase diagrams under constant temperature conditions are presented to elucidate the dependence of phase separation behavior on polyampholyte sequence charge pattern as well as ion-pair dissociation constant, volumetric effects on ion association, solvent quality, and temperature.
Collapse
Affiliation(s)
- Jonas Wessén
- Department of Biochemsitry, University of Toronto, Canada
| | | | | |
Collapse
|
8
|
Waltmann C, Mills CE, Wang J, Qiao B, Torkelson JM, Tullman-Ercek D, de la Cruz MO. Functional enzyme-polymer complexes. Proc Natl Acad Sci U S A 2022; 119:e2119509119. [PMID: 35312375 PMCID: PMC9060439 DOI: 10.1073/pnas.2119509119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/21/2022] [Indexed: 01/23/2023] Open
Abstract
SignificanceThe use of biological enzyme catalysts could have huge ramifications for chemical industries. However, these enzymes are often inactive in nonbiological conditions, such as high temperatures, present in industrial settings. Here, we show that the enzyme PETase (polyethylene terephthalate [PET]), with potential application in plastic recycling, is stabilized at elevated temperature through complexation with random copolymers. We demonstrate this through simulations and experiments on different types of substrates. Our simulations also provide strategies for designing more enzymatically active complexes by altering polymer composition and enzyme charge distribution.
Collapse
Affiliation(s)
- Curt Waltmann
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Carolyn E. Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Jeremy Wang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Baofu Qiao
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - John M. Torkelson
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
| |
Collapse
|
9
|
Ghasemi M, Larson RG. Future Directions in Physiochemical Modeling of the Thermodynamics of Polyelectrolyte Coacervates (
PECs
). AIChE J 2022. [DOI: 10.1002/aic.17646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mohsen Ghasemi
- Department of Chemical Engineering University of Michigan Ann Arbor Michigan USA
| | - Ronald G. Larson
- Department of Chemical Engineering University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
10
|
Xiao X, Ji J, Zhao W, Nangia S, Libera M. Salt Destabilization of Cationic Colistin Complexation within Polyanionic Microgels. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xixi Xiao
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Jingjing Ji
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Wenhan Zhao
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Matthew Libera
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| |
Collapse
|
11
|
Digby ZA, Yang M, Lteif S, Schlenoff JB. Salt Resistance as a Measure of the Strength of Polyelectrolyte Complexation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zachary A. Digby
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Mo Yang
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Sandrine Lteif
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Joseph B. Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
12
|
Bobbili SV, Milner ST. A simple simulation model for complex coacervates. SOFT MATTER 2021; 17:9181-9188. [PMID: 34585705 DOI: 10.1039/d1sm00881a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
When oppositely charged polyelectrolytes mix in an aqueous solution, associative phase separation gives rise to coacervates. Experiments reveal the phase diagram for such coacervates, and determine the impact of charge density, chain length and added salt. Simulations often use hybrid MC-MD methods to produce such phase diagrams, in support of experimental observations. We propose an idealized model and a simple simulation technique to investigate coacervate phase behavior. We model coacervate systems by charged bead-spring chains and counterions with short-range repulsions, of size equal to the Bjerrum length. We determine phase behavior by equilibrating a slab of concentrated coacervate with respect to swelling into a dilute phase of counterions. At salt concentrations below the critical point, the counterion concentration in the coacervate and dilute phases are nearly the same. At high salt concentrations, we find a one-phase region. Along the phase boundary, the total concentration of beads in the coacervate phase is nearly constant, corresponding to a "Bjerrum liquid''. This result can be extended to experimental phase diagrams by assigning appropriate volumes to monomers and salts.
Collapse
Affiliation(s)
- Sai Vineeth Bobbili
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Scott T Milner
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
13
|
Tian WD, Ghasemi M, Larson RG. Extracting free energies of counterion binding to polyelectrolytes by molecular dynamics simulations. J Chem Phys 2021; 155:114902. [PMID: 34551524 DOI: 10.1063/5.0056853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We use all-atom molecular dynamics simulations to extract ΔGeff, the free energy of binding of potassium ions K+ to the partially charged polyelectrolyte poly(acrylic acid), or PAA, in dilute regimes. Upon increasing the charge fraction of PAA, the chains adopt more extended conformations, and simultaneously, potassium ions bind more strongly (i.e., with more negative ΔGeff) to the highly charged chains to relieve electrostatic repulsions between charged monomers along the chains. We compare the simulation results with the predictions of a model that describes potassium binding to PAA chains as a reversible reaction whose binding free energy (ΔGeff) is adjusted from its intrinsic value (ΔG) by electrostatic correlations, captured by a random phase approximation. The bare or intrinsic binding free energy ΔG, which is an input in the model, depends on the binding species and is obtained from the radial distribution function of K+ around the charged monomer of a singly charged, short PAA chain in dilute solutions. We find that the model yields semi-quantitative predictions for ΔGeff and the degree of potassium binding to PAA chains, α, as a function of PAA charge fraction without using fitting parameters.
Collapse
Affiliation(s)
- Wen-de Tian
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Mohsen Ghasemi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ronald G Larson
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
14
|
Friedowitz S, Qin J. Reversible ion binding for polyelectrolytes with adaptive conformations. AIChE J 2021. [DOI: 10.1002/aic.17426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sean Friedowitz
- Department of Chemical Engineering Stanford University Stanford California USA
| | - Jian Qin
- Department of Chemical Engineering Stanford University Stanford California USA
| |
Collapse
|
15
|
Dinic J, Marciel AB, Tirrell MV. Polyampholyte physics: Liquid–liquid phase separation and biological condensates. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101457] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Knoerdel AR, Blocher McTigue WC, Sing CE. Transfer Matrix Model of pH Effects in Polymeric Complex Coacervation. J Phys Chem B 2021; 125:8965-8980. [PMID: 34328340 DOI: 10.1021/acs.jpcb.1c03065] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oppositely charged polyelectrolytes can undergo an associative phase separation, in a process known as polymeric complex coacervation. This phenomenon is driven by the electrostatic attraction between polyanion and polycation species, leading to the formation of a polymer-dense coacervate phase and a coexisting polymer-dilute supernatant phase. There has been significant recent interest in the physical origin and features of coacervation; yet notably, experiments often use weak polyelectrolytes the charge state of which depends on solution pH, while theoretical or computational efforts typically assume strong polyelectrolytes that remain fully charged. There have been only a few efforts to address this limitation, and thus there has been little exploration of how pH can affect complex coacervation. In this paper, we modify a transfer matrix theory of coacervation to account for acid-base equilibria, taking advantage of its ability to directly account for some local ion correlations that will affect monomer charging. We show that coacervation can stabilize the charged state of a weak polyelectrolyte via the proximity of oppositely charged monomers, and can lead to asymmetric phase diagrams where the positively and negatively charged polyelectrolytes exhibit different behaviors near the pKa of either chain. Specifically, there is a partitioning of one of the salt species to a coacervate to maintain electroneutrality when one of the polyelectrolytes is only partially charged. This results in the depletion of the same salt species in the supernatant, and overall can suppress phase separation. We also demonstrate that, when one of the species is only partially charged, mixtures that are off-stoichiometric in volume fraction but stoichiometric in charge exhibit the greatest propensity to form coacervate phases.
Collapse
Affiliation(s)
- Ashley R Knoerdel
- Program in Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Whitney C Blocher McTigue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Neitzel A, Fang YN, Yu B, Rumyantsev AM, de Pablo JJ, Tirrell MV. Polyelectrolyte Complex Coacervation across a Broad Range of Charge Densities. Macromolecules 2021; 54:6878-6890. [PMID: 34334816 PMCID: PMC8320234 DOI: 10.1021/acs.macromol.1c00703] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/19/2021] [Indexed: 01/02/2023]
Abstract
Polyelectrolyte complex coacervates of homologous (co)polyelectrolytes with a near-ideally random distribution of a charged and neutral ethylene oxide comonomer were synthesized. The unique platform provided by these building blocks enabled an investigation of the phase behavior across charge fractions 0.10 ≤ f ≤ 1.0. Experimental phase diagrams for f = 0.30-1.0 were obtained from thermogravimetric analysis of complex and supernatant phases and contrasted with molecular dynamics simulations and theoretical scaling laws. At intermediate to high f, a dependence of polymer weight fraction in the salt-free coacervate phase (w P,c) of w P,c ∼ f 0.37±0.01 was extracted; this trend was in good agreement with accompanying simulation predictions. Below f = 0.50, w P,c was found to decrease more dramatically, qualitatively in line with theory and simulations predicting an exponent of 2/3 at f ≤ 0.25. Preferential salt partitioning to either coacervate or supernatant was found to be dictated by the chemistry of the constituent (co)polyelectrolytes.
Collapse
Affiliation(s)
- Angelika
E. Neitzel
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Argonne
National Laboratory, Materials Science Division, Lemont, Illinois 60439, United States
| | - Yan N. Fang
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Boyuan Yu
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Artem M. Rumyantsev
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Argonne
National Laboratory, Materials Science Division, Lemont, Illinois 60439, United States
| | - Matthew V. Tirrell
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Argonne
National Laboratory, Materials Science Division, Lemont, Illinois 60439, United States
| |
Collapse
|
18
|
Friedowitz S, Lou J, Barker KP, Will K, Xia Y, Qin J. Looping-in complexation and ion partitioning in nonstoichiometric polyelectrolyte mixtures. SCIENCE ADVANCES 2021; 7:eabg8654. [PMID: 34330707 PMCID: PMC8324053 DOI: 10.1126/sciadv.abg8654] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
A wide variety of intracellular membraneless compartments are formed via liquid-liquid phase separation of charged proteins and nucleic acids. Understanding the stability of these compartments, while accounting for the compositional heterogeneity intrinsic to cellular environments, poses a daunting challenge. We combined experimental and theoretical efforts to study the effects of nonstoichiometric mixing on coacervation behavior and accurately measured the concentrations of polyelectrolytes and small ions in the coacervate and supernatant phases. For synthetic polyacrylamides and polypeptides/DNA, with unequal mixing stoichiometry, we report a general "looping-in" phenomenon found around physiological salt concentrations, where the polymer concentrations in the coacervate initially increase with salt addition before subsequently decreasing. This looping-in behavior is captured by a molecular model that considers reversible ion binding and electrostatic interactions. Further analysis in the low-salt regime shows that the looping-in phenomenon originates from the translational entropy of counterions that are needed to neutralize nonstoichiometric coacervates.
Collapse
Affiliation(s)
- Sean Friedowitz
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Junzhe Lou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Karis Will
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Yan Xia
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - Jian Qin
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Wang J, Waltmann C, Umana-Kossio H, Olvera de la Cruz M, Torkelson JM. Heterogeneous Charged Complexes of Random Copolymers for the Segregation of Organic Molecules. ACS CENTRAL SCIENCE 2021; 7:882-891. [PMID: 34079903 PMCID: PMC8161480 DOI: 10.1021/acscentsci.1c00119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Indexed: 05/29/2023]
Abstract
Nature harnesses the disorder of intrinsically disordered proteins to organize enzymes and biopolymers into membraneless organelles. The heterogeneous nature of synthetic random copolymers with charged, polar, and hydrophobic groups has been exploited to mimic intrinsically disordered proteins, forming complexes with enzymatically active proteins and delivering them into nonbiological environments. Here, the properties of polyelectrolyte complexes composed of two random copolymer polyelectrolytes are studied experimentally and via simulation with the aim of exploiting such complexes for segregating organic molecules from water. The anionic polyelectrolyte contains hydrophilic and hydrophobic side chains and forms self-assembled hydrophobic domains. The cationic polymer is a high-molecular-weight copolymer of hydrophilic and charged side groups and acts as a flocculant. We find that the polyelectrolyte complexes obtained with this anionic and cationic random copolymer system are capable of absorbing small cationic, anionic, and hydrophobic organic molecules, including perfluorooctanoic acid, a compound of great environmental and toxicologic concern. Importantly, these macroscopic complexes can be easily removed from water, thereby providing a simple approach for organic contaminant removal in aqueous media. MARTINI and coarse-grained molecular dynamics simulations explore how the microscale heterogeneity of these random copolymer complexes relates to their segregation functionality.
Collapse
Affiliation(s)
- Jeremy Wang
- Dept.
of Materials Science and Engineering, Dept. of Chemical and Biological
Engineering, Dept. of Chemistry, and Dept. of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Curt Waltmann
- Dept.
of Materials Science and Engineering, Dept. of Chemical and Biological
Engineering, Dept. of Chemistry, and Dept. of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Han Umana-Kossio
- Dept.
of Materials Science and Engineering, Dept. of Chemical and Biological
Engineering, Dept. of Chemistry, and Dept. of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Monica Olvera de la Cruz
- Dept.
of Materials Science and Engineering, Dept. of Chemical and Biological
Engineering, Dept. of Chemistry, and Dept. of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - John M. Torkelson
- Dept.
of Materials Science and Engineering, Dept. of Chemical and Biological
Engineering, Dept. of Chemistry, and Dept. of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
20
|
Ghasemi M, Larson RG. Role of electrostatic interactions in charge regulation of weakly dissociating polyacids. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2020.101322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Ghasemi M, Friedowitz S, Larson RG. Overcharging of polyelectrolyte complexes: an entropic phenomenon. SOFT MATTER 2020; 16:10640-10656. [PMID: 33084721 DOI: 10.1039/d0sm01466d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Overcharging in complex coacervation, in which a polyelectrolyte complex coacervate (PEC) initially containing equal moles of the cationic and anionic monomers absorbs a large excess of one type of polyelectrolyte species, is predicted using a recently developed thermodynamic model describing complexation through a combination of reversible ion binding on the chains and long-range electrostatic correlations. We show that overcharging is favored roughly equally by the translational entropy of released counterions and the binding entropy of polyelectrolytes in the polyelectrolyte complex, thus helping resolve competing explanations for overcharging in the literature. We find that the extent of overcharging is non-monotonic in the concentration of added salt and increases with both strength of ion-pairing between polyions and chain hydrophobicity. The predicted extent of overcharging of the PEC is directly compared with that of multilayers made of poly(diallyldimethylammonium), PDADMA, and poly(styrene-sulfonate), PSS, overcompensated by the polycation in two different salts: KBr and NaCl. Accounting for the specificity of salt ion interactions with the polyelectrolytes, we find good qualitative agreement between theory and experiment.
Collapse
Affiliation(s)
- Mohsen Ghasemi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|