1
|
Rackov S, Pilić B, Janković N, Kosanić M, Petković M, Vraneš M. From Synthesis to Functionality: Tailored Ionic Liquid-Based Electrospun Fibers with Superior Antimicrobial Properties. Polymers (Basel) 2024; 16:2094. [PMID: 39125121 PMCID: PMC11314316 DOI: 10.3390/polym16152094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 08/12/2024] Open
Abstract
Herein, we report an efficient and facile strategy for the preparation of imidazolium-based ionic liquid (IL) monomers ([CnVIm][Br], n = 2, 4, 6, 8, 10, and 12) and their corresponding polymeric ionic liquids (PILs) with potent antimicrobial activities against Gram-negative and Gram-positive bacteria and fungi. The electrospinning technique was utilized to tailor the polymers with the highest antimicrobial potency into porous membranes that can be easily implemented into diverse systems and extend their practical bactericidal application. The antimicrobial mechanism of obtained ILs, polymers, and nanomaterials is considered concerning the bearing chain length, polymerization process, and applied processing technique that provides a unique fibrous structure. The structure composition was selected due to the well-established inherent amphiphilicity that 1-alkylimidazolium ILs possess, coupled with proven antimicrobial, antiseptic, and antifungal behavior. The customizable nature of ILs and PILs complemented with electrospinning is exploited for the development of innovative antimicrobial performances born from the intrinsic polymer itself, offering solutions to the increasing challenge of bacterial resistance. This study opens up new prospects toward designer membranes providing a complete route in their designing and revolutionizing the approach of fabricating multi-functional systems with tunable physicochemical, surface properties, and interesting morphology.
Collapse
Affiliation(s)
- Sanja Rackov
- Faculty of Technology Novi Sad, Department of Materials Engineering, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Branka Pilić
- Faculty of Technology Novi Sad, Department of Materials Engineering, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Nenad Janković
- Institute for Information Technologies Kragujevac, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia;
| | - Marijana Kosanić
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia;
| | - Marijana Petković
- Department of Atomic Physics, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia;
| | - Milan Vraneš
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia;
| |
Collapse
|
2
|
Dan Y, Luo H, Gong P, Yan D, Niu Y, Li G. Structural, energetic and dynamic investigation of poly(ethylene oxide) in imidazolium-based ionic liquids with different cationic structures. Phys Chem Chem Phys 2023; 25:29783-29796. [PMID: 37886855 DOI: 10.1039/d3cp01946b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
In this work, two imidazolium-based ionic liquids (ILs) with different cations including dications (DIL) and monocations (MIL) were blended with poly(ethylene oxide) (PEO). The influence of ILs' structure on the structural and dynamic properties of a PEO/IL system was investigated by molecular dynamics (MD) simulation and density functional theory (DFT) methods. The simulation results show that DIL exhibits weaker interaction with PEO than MIL due to a stronger IL aggregation effect. The intermolecular interaction also makes the PEO chain tend to organize around the imidazolium ring of ILs, which causes the conformational entropy loss. Compared with PEO/MIL, this phenomenon is more significant in PEO/DIL because of the double positive centers of the dication and a longer hydrogen bond lifetime. MD simulation also demonstrates that DIL could act as a "crosslinker" to promote the formation of a physical crosslinking network which has strong dependence on the concentration of IL. The competition between physical crosslinking and plasticizing effects induces non-monotonic variations of relaxation time in PEO/DIL, which is consistent with its unusual change of the glass transition temperature (Tg). Despite stronger hydrogen bonding interactions between PEO and MIL demonstrated by atom-in-molecules (AIM) and reduced density gradient (RDG) analysis, the segmental mobility is slower in PEO/DIL according to the MSD curve. These differences in multiple structural or energetic factors finally lead to different conductive mechanisms and hence obtain different ionic conductivities.
Collapse
Affiliation(s)
- Yongjie Dan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China.
| | - Huan Luo
- School of Automation, Chengdu University of Information Technology, Chengdu, China
| | - Pengjian Gong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China.
| | - Dadong Yan
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Yanhua Niu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China.
| | - Guangxian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
3
|
Elmahdy MM, Aldhafeeri KA, Ahmed MT, Azzam MA, Fahmy T. Molecular dynamics and conduction mechanism of poly(vinyl chloride‐co‐vinyl acetate‐co‐2‐hydroxypropyl acrylate) terpolymer containing ionic liquid. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Mahdy M. Elmahdy
- Department of Physics College of Science and Humanities in Al‐Kharj, Prince Sattam bin Abdulaziz University Al‐Kharj Saudi Arabia
- Department of Physics Faculty of Science, Mansoura University Mansoura Egypt
| | - Khalid A. Aldhafeeri
- Department of Physics College of Science and Humanities in Al‐Kharj, Prince Sattam bin Abdulaziz University Al‐Kharj Saudi Arabia
| | - Moustafa T. Ahmed
- Department of Physics College of Science and Humanities in Al‐Kharj, Prince Sattam bin Abdulaziz University Al‐Kharj Saudi Arabia
- Polymer Research Group Department of Physics, Faculty of Science, Mansoura University Egypt
| | - Maged A. Azzam
- Department of Chemistry College of Science and Humanities in Al‐Kharj, Prince Sattam bin Abdulaziz University Al‐Kharj Saudi Arabia
| | - Tarek Fahmy
- Polymer Research Group Department of Physics, Faculty of Science, Mansoura University Egypt
| |
Collapse
|
4
|
Dynamics of Poly(methyl methacrylate) in Ionic Liquids with Different Concentration and Cationic Structures. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Liu G, Fang D, Dan Y, Luo H, Luo C, Niu Y, Li G. Influence of ionic liquids on the chain dynamics and enthalpy relaxation of poly(methyl methacrylate). Phys Chem Chem Phys 2022; 24:16388-16396. [PMID: 35762774 DOI: 10.1039/d2cp02223k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imidazolium ionic liquids (ILs) with various alkyl chain lengths on the cations ([Cnmim]+, n = 2, 4 and 8) and different combined anions ([TFSI]- and [PF6]-) were blended with poly(methyl methacrylate) (PMMA), and the effects of the IL structure on the chain dynamics of PMMA were experimentally investigated by rheology and DSC measurements combined with a simulation method. The results indicate that the interaction between PMMA and ILs becomes stronger as the alkyl chain length on the imidazolium ring increases or the anion changes from [PF6]- to [TFSI]-. As a result, a higher critical entanglement concentration and a larger entanglement molecular weight of PMMA were found in [C8mim][TFSI] due to the stiffer conformation. Molecular dynamics (MD) simulations further demonstrated stronger interactions between PMMA and ILs with longer cationic alkyl chain lengths or [TFSI]- anions, which showed smaller Flory-Huggins interaction parameters and larger radii of gyration, Rg. However, the larger size of alkyl chains or [TFSI]- anions produced a larger free volume in the system as evidenced by positron annihilation lifetime spectroscopy (PALS), which competed with the molecular interaction and dominated the segmental motion. Therefore, a lower Tg and accelerated segmental relaxation were observed. Compared to alkyl chain length, the effect of anions on the interactions between ILs and PMMA is more prominent.
Collapse
Affiliation(s)
- Gang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China.
| | - Dong Fang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China.
| | - Yongjie Dan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China.
| | - Huan Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China.
| | - Cong Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China.
| | - Yanhua Niu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China.
| | - Guangxian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Luo H, He X, Li W, Niu Y, Li G. Chain Dynamics and Crystallization Behavior of Poly(ethylene oxide) in Imidazolium-Based Ionic Liquids with Different Cationic Structures. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huan Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
| | - Xi He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
| | - Wenze Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
| | - Yanhua Niu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
| | - Guangxian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Wang Y, Liu H, Yu H, Zhao P, Wang Q, Liao L, Luo M, Zheng T, Liao S, Peng Z. New insight into naturally occurring network and entanglements induced strain behavior of vulcanized natural rubber. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Abstract
We apply a scaling theory of semidilute polymer solutions to quantify solution properties of polysaccharides such as galactomannan, chitosan, sodium carboxymethyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, xanthan, apple pectin, cellulose tris(phenyl carbamate), hydroxyethyl cellulose, hydroxypropyl cellulose, sodium hyaluronate, sodium alginate, and sodium κ-carrageenan. In particular, we obtain the molar mass of the chain segment inside a correlation blob M g = B̂ 3/(3ν-1) c 1/(1-3ν) as a function of concentration c, interaction parameter B̂, and exponent ν. Parameter B̂ assumes values B̂ g, B̂ th and M 0/N A 1/3 l for exponents v = 0.588, 0.5 and 1, respectively, where M 0 is the molar mass of a repeat unit, l is the projection length of a repeat unit, and N A is the Avogadro number. In the different solution regimes, the values of the B̂-parameters are extracted from the plateaus of the normalized specific viscosity ηsp (c)/M w c 1/(3ν-1), where M w is the weight-average molecular weight of the polymer chain. The values of the B̂-parameters are used in calculations of the excluded volume v, Kuhn length b, and crossover concentrations c*, c th, and c** into a semidilute polymer solution, a solution of overlapping thermal blobs and a concentrated polymer solution, respectively. This information is summarized as a diagram of states of different polysaccharide solution regimes by implementing a v/bl 2 and c/c** representation. The scaling approach is extended to the entangled solution regime, allowing us to obtain the chain packing number, P̃ e. This completes the set of parameters {B̂ g, B̂ th, P̃ e} which uniquely describes the static and dynamic properties of a polysaccharide solution.
Collapse
|
9
|
Affiliation(s)
- Andrey V. Dobrynin
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Michael Jacobs
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Ryan Sayko
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
10
|
Zhang H, Yang S, Yang Z, Wang D, Han J, Li C, Zhu C, Xu J, Zhao N. An Extremely Stretchable and Self-Healable Supramolecular Polymer Network. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4499-4507. [PMID: 33433191 DOI: 10.1021/acsami.0c19560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The construction of a single polymer network with extreme stretchability, relatively high mechanical strength, and fast and facile autonomous room-temperature self-healing capability still remains a challenge. Herein, supramolecular polymer networks are fabricated by synergistically incorporating metal-ligand and hydrogen bonds in poly(propylene glycol) (PPG). The representative specimen, PPG-Im-MDA-1.5-0.25-Cu, shows a combination of notable mechanical properties involving an extreme stretching ratio of 346 ± 14× and a Young's modulus of 2.10 ± 0.14 MPa, which are superior to the previously reported extremely stretchable polymeric materials. Notably, the destroyed specimen can fully recover mechanical performances within 1 h. The tunability of mechanical properties and self-healing capability has been actualized by merely tailoring the content of a chain extender. The application of the as-prepared supramolecular PPG network in constructing a flexible and self-healable conductor has been demonstrated. This strategy provides some insights for preparing extremely stretchable and self-healable polymeric materials.
Collapse
Affiliation(s)
- Huan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shijia Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhusheng Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Juanjuan Han
- Center for Physicochemical Analysis and Measurement, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Cuihua Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Caizhen Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jian Xu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ning Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|