1
|
Sun J, Cui C, Ma M, Gao L, Ross CA, Shi LY. Self-Assembly of Hierarchical Silicon-Containing Block Copolymers with Cross-Linkable 3 nm Smectic Motifs for Nanopatterning and Osmotic Energy Conversion Membranes. ACS NANO 2024; 18:28936-28945. [PMID: 39383046 DOI: 10.1021/acsnano.4c09266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Highly-dense small-feature-size nanopatterns and nanoporous membranes are important in advanced microelectronics, nanofiltration, and biomimic device manufacturing. Here, we report the synthesis and self-assembly of a series of high-interaction-parameter (high-χ) silicon-containing hierarchical block copolymers (BCPs) with cross-linkable subordering chalcone motifs, which possess both an intrinsic native etching contrast for nanofabrication and cross-linkability under ultraviolet light for generating free-standing membranes. BCPs with a volume fraction of chalcone block of 55-74% form ordered primary nanostructures with period 15-22 nm including lamellae, double gyroid, hexagonally packed cylinders, and body-centered cubic spheres of the minority Si-containing block. The majority PChMA block self-assembles into a highly ordered 3 nm smectic sublattice, and cross-linking after self-assembly enables the formation of free-standing isoporous membranes. Both silicon oxide nanopatterns and free-standing nanoporous osmotic energy conversion membranes are generated by etching films of these BCPs. This work demonstrates that the combination of hierarchical ordering and cross-linkable motifs in a high-interaction parameter BCP enables applications in both nanofabrication and free-standing functional porous membranes.
Collapse
Affiliation(s)
- Jingrui Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chang Cui
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Mingchao Ma
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Longcheng Gao
- Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Caroline A Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ling-Ying Shi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Liang R, Xue Y, Fu X, Le AN, Song Q, Qiang Y, Xie Q, Dong R, Sun Z, Osuji CO, Johnson JA, Li W, Zhong M. Hierarchically engineered nanostructures from compositionally anisotropic molecular building blocks. NATURE MATERIALS 2022; 21:1434-1440. [PMID: 36357688 DOI: 10.1038/s41563-022-01393-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The inability to synthesize hierarchical structures with independently tailored nanoscale and mesoscale features limits the discovery of next-generation multifunctional materials. Here we present a predictable molecular self-assembly strategy to craft nanostructured materials with a variety of phase-in-phase hierarchical morphologies. The compositionally anisotropic building blocks employed in the assembly process are formed by multicomponent graft block copolymers containing sequence-defined side chains. The judicious design of various structural parameters in the graft block copolymers enables broadly tunable compositions, morphologies and lattice parameters across the nanoscale and mesoscale in the assembled structures. Our strategy introduces advanced design principles for the efficient creation of complex hierarchical structures and provides a facile synthetic platform to access nanomaterials with multiple precisely integrated functionalities.
Collapse
Affiliation(s)
- Ruiqi Liang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Yazhen Xue
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Xiaowei Fu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| | - An N Le
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Qingliang Song
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Yicheng Qiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Qiong Xie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Ruiqi Dong
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Zehao Sun
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chinedum O Osuji
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA.
- Department of Chemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Zhang ZK, Ding SP, Ye Z, Xia DL, Xu JT. Thermodynamic understanding the phase behavior of fully quaternized poly(ethylene oxide)-b-poly(4-vinylpyridine) block copolymers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Grim BJ, Green MD. Thermodynamics and Structure‐Property Relationships of Charged Block Polymers. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bradley J. Grim
- Chemical Engineering School for Engineering of Matter Transport and Energy Arizona State University Tempe AZ 85287
| | - Matthew D. Green
- Chemical Engineering School for Engineering of Matter Transport and Energy Arizona State University Tempe AZ 85287
| |
Collapse
|
5
|
Zhang Z, Ding S, Zhou Y, Ye Z, Wang R, Du B, Xu J. Influence of Salt Doping on the Entropy‐Driven Lower Disorder‐to‐Order Transition Behavior of Poly(ethylene oxide)‐
b
‐Poly(4‐vinylpyridine). MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ze‐Kun Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Shi‐Peng Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Yi‐Ting Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Ze Ye
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Rui‐Yang Wang
- Department of Chemistry, Division of Advanced Materials Science Pohang University of Science and Technology Pohang 790‐784 Korea
| | - Bin‐Yang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Jun‐Ting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
6
|
Luo L, Tang Z, Yang W, Liu D, Shen Z, Fan XH. Thickness-Dependent Photo-Aligned Thin-Film Morphologies of a Block Copolymer Containing an Azobenzene-Based Liquid Crystalline Polymer and a Poly(ionic liquid). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9774-9784. [PMID: 34342997 DOI: 10.1021/acs.langmuir.1c01314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photo-induced alignment of the thin-film morphologies of azobenzene-containing block copolymers (BCPs) is an effective method to obtain a uniaxial pattern of nanocylinders. Although film thickness is an important factor affecting the self-assembly of BCP thin films, the influence of film thickness on the photo-induced alignment of BCP thin-film morphology has never been systematically studied. Herein, we report the thickness-dependent photo-aligned film morphologies of the BCP containing an azobenzene-based liquid crystalline polymer and a poly(ionic liquid) (PIL), with a perfect uniaxial pattern of PIL nanocylinders. For films aligned with the unpolarized light (UPL), the out-of-plane PIL nanocylinders can be obtained in the film with a thickness of only 1L0 (∼30 nm, where L0 is the layer spacing of the hexagonally packed cylinder array), which is far lower than the thickness (more than 4L0) of the thermally annealed film needed to obtain the same morphology. This change is attributed to the orientation effect of UPL on azobenzene mesogens that suppresses the excluded volume effect. For the films aligned with linearly polarized light (LPL), to take advantage of the excluded volume effect to obtain the planar orientation of azobenzene mesogens, the thickness should be controlled to be no more than 3L0 to achieve an in-plane uniaxial alignment of PIL nanocylinders. The above relationship between the morphology and thickness of photo-aligned film eliminates the obstacles encountered in preparing films with well-ordered photo-aligned morphologies.
Collapse
Affiliation(s)
- Longfei Luo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhehao Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Weilu Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Dong Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xing-He Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|