1
|
Bichler KJ, Jakobi B, Klapproth A, Mole RA, Schneider GJ. Position-Dependent Segmental Relaxation in Bottlebrush Polymers. Macromolecules 2024; 57:4729-4736. [PMID: 38827960 PMCID: PMC11140752 DOI: 10.1021/acs.macromol.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/12/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024]
Abstract
Segmental dynamics of specifically labeled poly(propylene oxide), PPO, based bottlebrush polymers, PNB-g-PPO, were studied using quasi-elastic neutron scattering. The focus was set to different parts of the side chains to investigate the hypothetical gradual relaxation behavior within the side chains of a bottlebrush polymer. Different sections of the side chains were highlighted for QENS via sequential polymerization of protonated and deuterated monomers to allow the study of the relaxation behavior of the inner and outer parts of the side chain separately. A comparison of these two parts reveals a slowdown due to the grafting process happening across the different regions. This is seen for the segmental relaxation time as well as on the time-dependent mean-square displacement. Additionally, the non-Gaussian parameter, α, shows a decreasing difference from Gaussian behavior with the distance to the backbone. Altogether, this leads to the conclusion that gradual relaxation behavior exists.
Collapse
Affiliation(s)
- Karin J. Bichler
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Bruno Jakobi
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alice Klapproth
- Australian
Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights 2234, NSW, Australia
| | - Richard A. Mole
- Australian
Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights 2234, NSW, Australia
| | - Gerald J. Schneider
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Department
of Physics & Astronomy, Louisiana State
University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
2
|
Jakobi B, Bichler KJ, Juranyi F, Schneider GJ. Reversed dynamics of bottlebrush polymers with stiff backbone and flexible side chains. J Chem Phys 2024; 160:084901. [PMID: 38385519 DOI: 10.1063/5.0184429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
The segmental dynamics of bottlebrush polymers with a stiff backbone and flexible side chains has been studied. The segmental relaxation time of side chains attached to a flexible backbone follows the same trend as linear polymers, an increase with the increasing molecular weight, but is slowed down compared to their linear counterparts. Theoretical work predicts a reversal of the molecular weight dependence of the relaxation time for stiff backbones. As a model for a stiff-g-flexible system, bottlebrushes with poly(norbornene) backbone and poly(propylene oxide) side chains, PNB-g-PPO, at a uniform grafting density have been synthesized and characterized with quasi-elastic neutron scattering. Indeed, the anticipated reversed dynamics was found. Increasing the side chain length decreases the segmental relaxation time. This indicates the importance of the characteristics of the grafting site beyond a simplified picture of an attached side chain. The mean square displacement shows a similar trend with longer side chains exhibiting a larger displacement.
Collapse
Affiliation(s)
- Bruno Jakobi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Karin J Bichler
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Fanni Juranyi
- Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Gerald J Schneider
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
3
|
Wu M, Bichler KJ, Jakobi B, Schneider GJ. Uniqueness of relaxation times determined by dielectric spectroscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:185101. [PMID: 36796106 DOI: 10.1088/1361-648x/acbcb8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Dielectric spectroscopy is extremely powerful to study molecular dynamics, because of the very broad frequency range. Often multiple processes superimpose resulting in spectra that expand over several orders of magnitude, with some of the contributions partially hidden. For illustration, we selected two examples, (i) normal mode of high molar mass polymers partially hidden by conductivity and polarization and (ii) contour length fluctuations partially hidden by reptation using the well-studied polyisoprene melts as example. The intuitive approach to describe experimental spectra and to extract relaxation times is the addition of two or more model functions. Here, we use the empirical Havriliak-Negami function to illustrate the ambiguity of the extracted relaxation time, despite an excellent agreement of the fit with experimental data. We show that there are an infinite number of solutions for which a perfect description of experimental data can be achieved. However, a simple mathematical relationship indicates uniqueness of the pairs of the relaxation strength and relaxation time. Sacrificing the absolute value of the relaxation time enables to find the temperature dependence of the parameters with a high accuracy. For the specific cases studied here, the time temperature superposition (TTS) is very useful to confirm the principle. However, the derivation is not based on a specific temperature dependence, hence, independent from the TTS. We compare new and traditional approaches and find the same trend for the temperature dependence. The important advantage of the new technology is the knowledge of the accuracy of the relaxation times. Relaxation times determined from data for which the peak is clearly visible are the same within the experimental accuracy for traditional and new technology. However, for data where a dominant process hides the peak, substantial deviations can be observed. We conclude that the new approach is particularly helpful for cases in which relaxation times need to be determined without having access to the associated peak position.
Collapse
Affiliation(s)
- Mengchun Wu
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, United States of America
| | - Karin J Bichler
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, United States of America
| | - Bruno Jakobi
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, United States of America
| | - Gerald J Schneider
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, United States of America
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, United States of America
| |
Collapse
|
4
|
Zimny S, Tarnacka M, Wojnarowska Z, Heczko D, Maksym P, Paluch M, Kamiński K. Impact of the graft’ structure on the behavior of PMMS-based brushes. High pressure studies. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
5
|
Hassler JF, Crabtree A, Liberman L, Bates FS, Hackel BJ, Lodge TP. Effect of Bottlebrush Poloxamer Architecture on Binding to Liposomes. Biomacromolecules 2023; 24:449-461. [PMID: 36563027 DOI: 10.1021/acs.biomac.2c01274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Poloxamers─triblock copolymers consisting of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO)─have demonstrated cell membrane stabilization efficacy against numerous types of stress. However, the mechanism responsible for this stabilizing effect remains elusive, hindering engineering of more effective therapeutics. Bottlebrush polymers have a wide parameter space and known relationships between architectural parameters and polymer properties, enabling their use as a tool for mechanistic investigations of polymer-lipid bilayer interactions. In this work, we utilized a versatile synthetic platform to create novel bottlebrush analogues to poloxamers and then employed pulsed-field-gradient NMR and an in vitro osmotic stress assay to explore the effect of bottlebrush architectural parameters on binding to, and protection of, model phospholipid bilayers. We found that the binding affinity of a bottlebrush poloxamer (BBP) (B-E1043P515, Mn ≈ 26 kDa) is about 3 times higher than a linear poloxamer with a similar composition and number of PPO units (L-E93P54E93, Mn ≈ 11 kDa). Furthermore, BBP binding is sensitive to overall molecular weight, side-chain length, and architecture (statistical versus block). Finally, all tested BBPs exhibit a protective effect on cell membranes under stress at sub-μM concentrations. As the factors controlling membrane affinity and protection efficacy of bottlebrush poloxamers are not understood, these results provide important insight into how they adhere to and stabilize a lipid bilayer surface.
Collapse
|
6
|
Bichler KJ, Jakobi B, Klapproth A, Tominaga T, Mole RA, Schneider GJ. Side Chain Dynamics of Poly(norbornene)-g-Poly(propylene oxide) Bottlebrush Polymers. Macromol Rapid Commun 2022; 44:e2200902. [PMID: 36564928 DOI: 10.1002/marc.202200902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Indexed: 12/25/2022]
Abstract
The segmental dynamics of the side chains of poly(norbornene)-g-poly(propylene oxide) (PNB-g-PPO) bottlebrush polymer in comparison to PPO is studied by quasi-elastic neutron scattering. Having experimental time and length scale information simultaneously allows to extract spatial information in addition to relaxation time. Tethering one end of the PPO side chain onto a stiff PNB backbone slows down the segmental relaxation, over the length and time scales investigated. The power law dependence of the relaxation time on the momentum transfer, Q, indicates a more heterogeneous relaxation pattern for the bottlebrush polymer, whereas the linear PPO has less deviations from a homogenous relaxation. Similar conclusions can be drawn from the time dependent mean square displacement, 〈r2 (t)〉, and the non-Gaussian parameter, α2 (t). Herein, the bottlebrush polymer shows a more restricted dynamics, whereas the linear PPO reaches 〈r2 (t)〉∝t0.5 at the highest temperature. The deviations from Gaussian behavior are evident at the α2 (t). Both samples show a decaying α2 (t). The non-Gaussian parameter supports the results from the power law dependence of the relaxation times, with lower α2 (t) values for PPO compared to those for PNB-g-PPO, pointing to less deviations from Gaussian behavior.
Collapse
Affiliation(s)
- Karin J Bichler
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Bruno Jakobi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - Alice Klapproth
- Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW, 2234, Australia
| | - Taiki Tominaga
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Tokai, 319-1106, Japan
| | - Richard A Mole
- Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW, 2234, Australia
| | - Gerald J Schneider
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.,Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| |
Collapse
|
7
|
Bichler KJ, Jakobi B, Honecker D, Stingaciu LR, Weldeghiorghis TK, Collins JHP, Schneider GJ. Dynamics of Bottlebrush Polymers in Solution by Neutron Spin Echo Spectroscopy. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Karin J. Bichler
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana70803, United States
| | - Bruno Jakobi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana70803, United States
| | - Dirk Honecker
- ISIS Facility, Rutherford Appleton Laboratory, DidcotOX11 0QX, United Kingdom
| | - Laura R. Stingaciu
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | | | - James H. P. Collins
- National High Magnetic Field Laboratory and Biology and McKnight Brain Institute, University of Florida, Box 100015, Gainesville, Florida32610-0015, United States
| | - Gerald J. Schneider
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana70803, United States
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana70803, United States
| |
Collapse
|
8
|
Asadi V, Li X, Ruggeri FS, Zuilhof H, van der Gucht J, Kodger TE. Synthesis of well-defined linear-bottlebrush-linear triblock copolymer towards architecturally-tunable soft materials. Polym Chem 2022; 13:4666-4674. [PMID: 36092984 PMCID: PMC9379773 DOI: 10.1039/d2py00841f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Linear-bottlebrush-linear (LBBL) triblock copolymers are emerging systems for topologically-tunable elastic materials. In this paper, a new synthetic methodology is presented to synthesize LBBL polystyrene-block-bottlebrushpolydimethylsiloxane-block-polystyrene (PS-b-bbPDMS-b-PS) triblock copolymer via the "grafting onto" approach where the precursors are individually synthesized through living anionic polymerization and selective coupling reaction. In this two-step approach, polystyrene-block-polymethylvinylsiloxane (PS-b-PMVS) diblock copolymer with a low dispersity couples with another living PS block to form PS-b-PMVS-b-PS triblock copolymer. Secondly, this is followed by grafting of separately prepared monohydride-terminated PDMS chains with controllable grafting density through a hydrosilylation reaction. In addition to fully tunable architectural parameters, this approach permits a quantitative determination of the ratio of diblock and triblock bottlebrush copolymers and consistency between batches, highlighting the feasibility for scaled-up production. These LBBL triblock copolymers self-assemble into soft, low-modulus thermoplastic elastomers, and the precise knowledge of the composition is crucial for correlating microstructure to mechanical properties.
Collapse
Affiliation(s)
- Vahid Asadi
- Physical Chemistry and Soft Matter, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Xuecong Li
- Physical Chemistry and Soft Matter, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
- Laboratory of Organic Chemistry, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Francesco Simone Ruggeri
- Physical Chemistry and Soft Matter, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
- Laboratory of Organic Chemistry, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University 21589 Jeddah Saudi Arabia
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Thomas E Kodger
- Physical Chemistry and Soft Matter, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
| |
Collapse
|
9
|
Xu X, Xu WS. Melt Properties and String Model Description of Glass Formation in Graft Polymers of Different Side-Chain Lengths. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaolei Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
10
|
Bichler KJ, Jakobi B, Schneider GJ. Dynamics of bottlebrush polymers. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202227201002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bottlebrushes are an interesting class of polymers which shows intriguing material properties often associated with dynamics. While dynamical phenomena in linear polymers are well understood and existing theories can describe them in a good way, bottlebrush dynamics have only rarely been investigated. Therefore, we performed dielectric spectroscopy and quasi-elastic neutron scattering to study the dynamics of polydimethylsiloxane-based bottlebrush polymers, PDMS-g-PDMS focusing mostly on the segmental dynamics of the side chains. Comparing the relaxation times of the α – relaxation, tracked with dielectric spectroscopy, of bottlebrush polymers with those of their respective linear side chains show a slowing down once the side chains are attached to the backbone. This effect diminishes and finally vanishes with increasing side chain length. The time and length scale, offered by quasi-elastic neutron scattering, fits for the segmental dynamics together with faster processes. The Q-dependence of the segmental relaxation times allows to classify bottlebrush polymers as heterogenous including a non-Gaussian character. For such a dynamical system, the mean square displacement needs to be separated into single processes before an overall mean square displacement can be generated by applying the time temperature superposition principle.
Collapse
|
11
|
Wahlen C, Frey H. Anionic Polymerization of Terpene Monomers: New Options for Bio-Based Thermoplastic Elastomers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00770] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christian Wahlen
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Holger Frey
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
12
|
Xu X, Douglas JF, Xu WS. Influence of Side-Chain Length and Relative Rigidities of Backbone and Side Chains on Glass Formation of Branched Polymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaolei Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
13
|
Bichler KJ, Jakobi B, Sakai VG, Klapproth A, Mole RA, Schneider GJ. Universality of Time-Temperature Scaling Observed by Neutron Spectroscopy on Bottlebrush Polymers. NANO LETTERS 2021; 21:4494-4499. [PMID: 33988366 PMCID: PMC8289293 DOI: 10.1021/acs.nanolett.1c01379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/07/2021] [Indexed: 06/12/2023]
Abstract
The understanding of materials requires access to the dynamics over many orders of magnitude in time; however, single analytical techniques are restricted in their respective time ranges. Assuming a functional relationship between time and temperature is one viable tool to overcome these limits. Despite its frequent usage, a breakdown of this assertion at the glass-transition temperature is common. Here, we take advantage of time- and length-scale information in neutron spectroscopy to show that the separation of different processes is the minimum requirement toward a more universal picture at, and even below, the glass transition for our systems. This is illustrated by constructing the full proton mean-square displacement for three bottlebrush polymers from femto- to nanoseconds, with simultaneous information on the partial contributions from segmental relaxation, methyl group rotation, and vibrations. The information can be used for a better analysis of results from numerous techniques and samples, improving the overall understanding of materials properties.
Collapse
Affiliation(s)
- Karin J. Bichler
- Department
of Physics & Astronomy, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Bruno Jakobi
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Victoria García Sakai
- ISIS
Facility, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0QX, United Kingdom
| | - Alice Klapproth
- Australian
Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights 2234, NSW, Australia
| | - Richard A. Mole
- Australian
Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights 2234, NSW, Australia
| | - Gerald J. Schneider
- Department
of Physics & Astronomy, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
14
|
Bichler KJ, Jakobi B, Schneider GJ. Dynamical Comparison of Different Polymer Architectures-Bottlebrush vs Linear Polymer. Macromolecules 2021; 54:1829-1837. [PMID: 33642616 PMCID: PMC7905874 DOI: 10.1021/acs.macromol.0c02104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/18/2021] [Indexed: 11/30/2022]
Abstract
Different polymer architectures behave differently regarding their dynamics. We have used a combination of dielectric spectroscopy, and fast field cycling nuclear magnetic resonance (NMR) to compare the dynamical behavior of two different polymer architectures, with similar overall molecular weight. The systems of interest are a bottlebrush polymer and a linear one, both based on poly(dimethylsiloxane) (PDMS). To verify the structure of the PDMS-g-PDMS bottlebrush in the melt, small-angle neutron scattering was used, yielding a spherical shape. Information about the segmental dynamics was revealed by dielectric spectroscopy and extended to higher temperatures by fast field cycling NMR. One advantage of fast field cycling NMR is the detection of large-scale chain dynamics, which dielectric spectroscopy cannot probe for PDMS. While segmental relaxation seems to be independent of the architecture, the large-scale chain dynamics show substantial differences, as represented by the mean square displacement. Here, two regions are detected for each polymer. The linear polymer shows the Rouse regime, followed by reptation. In contrast, the bottlebrush polymer performs Rouse dynamics and diffusion in the available time window, and entanglement effects are completely missing.
Collapse
Affiliation(s)
- Karin J. Bichler
- Department
of Physics and Astronomy, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Bruno Jakobi
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Gerald J. Schneider
- Department
of Physics and Astronomy, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
15
|
Goncharova IK, Tukhvatshin RS, Kholodkov DN, Novikov RA, Solodilov VI, Arzumanyan AV. Dumbbell-Shaped, Graft and Bottlebrush Polymers with All-Siloxane Nature: Synthetic Methodology, Thermal, and Rheological Behavior. Macromol Rapid Commun 2020; 42:e2000645. [PMID: 33345394 DOI: 10.1002/marc.202000645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/04/2020] [Indexed: 12/14/2022]
Abstract
A methodology for synthesizing a wide range of dumbbell-shaped, graft and bottlebrush polymers with all-siloxane nature (without carbosilane linkers) is suggested. These macroarchitectures are synthesized from SiOH-containing compounds-silanol (Et3 SiOH) and siloxanol dendrons of the first and second generations, with various peripheral substituents (Me or Et)-and from linear siloxanes comprising terminal and internal SiH groups by the Piers-Rubinsztajn reaction. Products and key building blocks are obtained in yields up to 95%. These polymers are heat and frost-resistant siloxanes. As it turns out, the product physical properties are determined not only by the macromolecular structure, the linear chain length, the size and frequency of branched pendant, but also by the type of peripheral substituents-Me or Et-in the pendant. Thus, the viscosity of the graft polymers with branched pendant groups comprising peripheral Me-groups is more than ≈3-5 fold lower than that of analogous polymers with peripheral Et-groups.
Collapse
Affiliation(s)
- Irina K Goncharova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow, 119991, Russian Federation
| | - Rinat S Tukhvatshin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow, 119991, Russian Federation
| | - Dmitry N Kholodkov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow, 119991, Russian Federation
| | - Roman A Novikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Pr., Moscow, 119991, Russian Federation
| | - Vitaliy I Solodilov
- Semenov Federal Research Center For Chemical Physics Russian Academy of Sciences, 4 Kosygin Street, Moscow, 119991, Russian Federation
| | - Ashot V Arzumanyan
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow, 119991, Russian Federation
| |
Collapse
|
16
|
Bichler KJ, Jakobi B, Sakai VG, Klapproth A, Mole RA, Schneider GJ. Short-Time Dynamics of PDMS- g-PDMS Bottlebrush Polymer Melts Investigated by Quasi-Elastic Neutron Scattering. Macromolecules 2020; 53:9553-9562. [PMID: 33191954 PMCID: PMC7659037 DOI: 10.1021/acs.macromol.0c01846] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/28/2020] [Indexed: 12/04/2022]
Abstract
We have studied the short-time dynamical behavior of polydimethylsiloxane (PDMS) bottlebrush polymers, PDMS-g-PDMS. The samples have similar backbone lengths but different side-chain lengths, resulting in a shape transition. Quasi-elastic neutron scattering was used to observe the dynamical changes inherent to these structural changes. The combination of data from three spectrometers enabled to follow the dynamics over broad frequency and temperature ranges, which included segmental relaxations and more localized motions. The latter, identified as the methyl group rotation, is described by a threefold jump model and shows higher activation energies compared to linear PDMS. The segmental relaxation times, τs, decrease with increasing molecular weight of the side chains but increase with momentum transfer, Q, following a power law, which suggests a non-Gaussian behavior for bottlebrush polymers.
Collapse
Affiliation(s)
- Karin J. Bichler
- Department
of Physics &Astronomy, Louisiana State
University, Baton
Rouge 70803, Louisiana, United States
| | - Bruno Jakobi
- Department
of Chemistry, Louisiana State University, Baton Rouge 70803, Louisiana, United States
| | - Victoria García Sakai
- ISIS
Facility, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0QX, U.K.
| | - Alice Klapproth
- Australian
Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights 2234, New South Wales, Australia
| | - Richard A. Mole
- Australian
Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights 2234, New South Wales, Australia
| | - Gerald J. Schneider
- Department
of Physics &Astronomy, Louisiana State
University, Baton
Rouge 70803, Louisiana, United States
- Department
of Chemistry, Louisiana State University, Baton Rouge 70803, Louisiana, United States
| |
Collapse
|