1
|
Gao J, Ren Y, Lu Y, Ma Q, Sun Y, Jia L. Fabrication of Hierarchical Assemblies through Temperature-Triggered Liquid Crystallization Driven Self-Assembly. SMALL METHODS 2024; 8:e2301525. [PMID: 38185748 DOI: 10.1002/smtd.202301525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/08/2023] [Indexed: 01/09/2024]
Abstract
Functional hierarchy is prevalent in biological systems owing to natural evolution. Efforts to replicate these structures in artificial materials have gained traction in materials science. Although artificial hierarchical structures are fabricated at different scales based on site-specific interactions using ABC-type block copolymers (BCPs), the fabrication of such hierarchical structures using AB-type BCPs via a simple and efficient method remains challenging. Herein, a class of amphiphilic BCPs (PDenm-b-PACholn) is reported comprising dendronized oligoethylene glycol (Den) and cholesterol (AChol) as hydrophilic and hydrophobic moieties, respectively. By employing the collapse of PDenm blocks at a specific temperature, the fabrication of bundled fibers and multilayer vesicles is achieved with an obvious hierarchy. Different from common reversible aggregation-disaggregation processes of thermal-responsive polymers, the ordering of the core-forming block with liquid crystalline (LC) properties provides robustly physical cross-linking, coupled with epitaxial growth and the lateral fusion of LC blocks, guiding the formation of stable hierarchical micellar structures. It is highlighted that the combination of temperature-sensitive properties and LC ordering alignment offers a novel approach for constructing hierarchical structures using AB-type BCPs via an efficient one-step assembly method.
Collapse
Affiliation(s)
- Juanjuan Gao
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Yangge Ren
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Yue Lu
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Qingyang Ma
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Yixin Sun
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Lin Jia
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| |
Collapse
|
2
|
Moreno A, Delgado-Lijarcio J, Ronda JC, Cádiz V, Galià M, Sipponen MH, Lligadas G. Breathable Lignin Nanoparticles as Reversible Gas Swellable Nanoreactors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205672. [PMID: 36478382 DOI: 10.1002/smll.202205672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The design of stimuli-responsive lignin nanoparticles (LNPs) for advanced applications has hitherto been limited to the preparation of lignin-grafted polymers in which usually the lignin content is low (<25 wt.%) and its role is debatable. Here, the preparation of O2 -responsive LNPs exceeding 75 wt.% in lignin content is shown. Softwood Kraft lignin (SKL) is coprecipitated with a modified SKL fluorinated oleic acid ester (SKL-OlF) to form colloidal stable hybrid LNPs (hy-LNPs). The hy-LNPs with a SKL-OlF content ranging from 10 to 50 wt.% demonstrated a reversible swelling behavior upon O2 /N2 bubbling, increasing their size - ≈35% by volume - and changing their morphology from spherical to core-shell. Exposition of hy-LNPs to O2 bubbling promotes a polarity change on lignin-fluorinated oleic chains, and consequently their migration from the inner part to the surface of the particle, which not only increases the particle size but also endows hy-LNPs with enhanced stability under harsh conditions (pH < 2.5) by the hydration barrier effect. Furthermore, it is also demonstrated that these new stimuli-responsive particles as gas tunable nanoreactors for the synthesis of gold nanoparticles. Combining a straightforward preparation with their enhanced stability and responsiveness to O2 gas these new LNPs pave the way for the next generation of smart lignin-based nanomaterials.
Collapse
Affiliation(s)
- Adrian Moreno
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, Rovira i Virgili University, Tarragona, 43007, Spain
| | - Javier Delgado-Lijarcio
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, Rovira i Virgili University, Tarragona, 43007, Spain
| | - Juan C Ronda
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, Rovira i Virgili University, Tarragona, 43007, Spain
| | - Virginia Cádiz
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, Rovira i Virgili University, Tarragona, 43007, Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, Rovira i Virgili University, Tarragona, 43007, Spain
| | - Mika H Sipponen
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, Stockholm, SE-106 91, Sweden
| | - Gerard Lligadas
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, Rovira i Virgili University, Tarragona, 43007, Spain
| |
Collapse
|
3
|
Slor G, Tevet S, Amir RJ. Stimuli-Induced Architectural Transition as a Tool for Controlling the Enzymatic Degradability of Polymeric Micelles. ACS POLYMERS AU 2022; 2:380-386. [PMID: 36855583 PMCID: PMC9955281 DOI: 10.1021/acspolymersau.2c00023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
Enzyme-responsive polymeric micelles hold great potential as drug delivery systems due to the overexpression of disease-associated enzymes. To achieve selective and efficient delivery of their therapeutic cargo, micelles need to be highly stable and yet disassemble when encountering their activating enzyme at the target site. However, increased micellar stability is accompanied by a drastic decrease in enzymatic degradability. The need to balance between stability and enzymatic degradation has severely limited the therapeutic applicability of enzyme-responsive nanocarriers. Here, we report a general modular approach for designing stable enzyme-responsive micelles whose enzymatic degradation can be enhanced on demand. The control over their response to the activating enzyme is achieved by stimuli-induced splitting of triblock amphiphiles into two identical diblock amphiphiles, which have the same hydrophilic-lipophilic balance as the parent amphiphile. This architectural transition drastically affects the micelle-unimer equilibrium and therefore increases the sensitivity of the micelles toward enzymatic degradation. As a proof of concept, we designed UV- and reduction-activated splitting mechanisms, demonstrating the ability to use architectural transition as a tool for tuning amphiphile-protein interactions, providing a general solution toward overcoming the stability-degradability barrier for enzyme-responsive nanocarriers.
Collapse
Affiliation(s)
- Gadi Slor
- Department
of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- Tel-Aviv
University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Shahar Tevet
- Department
of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- Tel-Aviv
University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
- ADAMA
Center for Novel Delivery Systems in Crop Protection, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Roey J. Amir
- Department
of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- Tel-Aviv
University Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
- ADAMA
Center for Novel Delivery Systems in Crop Protection, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
4
|
Moreno A, Morsali M, Sipponen MH. Catalyst-Free Synthesis of Lignin Vitrimers with Tunable Mechanical Properties: Circular Polymers and Recoverable Adhesives. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57952-57961. [PMID: 34813290 PMCID: PMC8662642 DOI: 10.1021/acsami.1c17412] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/15/2021] [Indexed: 06/04/2023]
Abstract
Biobased circular materials are alternatives to fossil-based engineering plastics, but simple and material-efficient synthetic routes are needed for industrial scalability. Here, a series of lignin-based vitrimers built on dynamic acetal covalent networks with a gel content exceeding 95% were successfully prepared in a one-pot, thermally activated, and catalyst-free "click" addition of softwood kraft lignin (SKL) to poly(ethylene glycol) divinyl ether (PDV). The variation of the content of lignin from 28 to 50 wt % was used to demonstrate that the mechanical properties of the vitrimers can be widely tuned in a facile way. The lowest lignin content (28 wt %) showed a tensile strength of 3.3 MPa with 35% elongation at break, while the corresponding values were 50.9 MPa and 1.0% for the vitrimer containing 50 wt % of lignin. These lignin-based vitrimers also exhibited excellent performance as recoverable adhesives for different substrates such as aluminum and wood, with a lap shear test strength of 6.0 and 2.6 MPa, respectively. In addition, recyclability of the vitrimer adhesives showed preservation of the adhesion performance exceeding 90%, indicating a promising potential for their use in sustainable circular materials.
Collapse
Affiliation(s)
| | | | - Mika H. Sipponen
- Department of Materials and Environmental
Chemistry, Stockholm University, Svante Arrhenius Väg 16C, SE-106 91 Stockholm, Sweden
| |
Collapse
|
5
|
Wang B, Li H, Li Z, Luo Q, Gu Z, Zhang H, Gong Q, Luo K. Amphiphilic block polymer-gadolinium conjugates: Design, synthesis and application as efficient and safe nanoscale magnetic resonance imaging contrast agents. CHEMICAL ENGINEERING JOURNAL 2021; 416:129170. [DOI: 10.1016/j.cej.2021.129170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Heinz D, Meister A, Hussain H, Busse K, Kressler J. Triphilic pentablock copolymers with perfluoroalkyl segment in central position. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Daniel Heinz
- Department of Chemistry Martin Luther University Halle‐Wittenberg Halle (Saale) Germany
| | - Annette Meister
- Department of Chemistry Martin Luther University Halle‐Wittenberg Halle (Saale) Germany
| | - Hazrat Hussain
- Department of Chemistry Quaid‐i‐Azam University Islamabad Pakistan
| | - Karsten Busse
- Department of Chemistry Martin Luther University Halle‐Wittenberg Halle (Saale) Germany
| | - Jörg Kressler
- Department of Chemistry Martin Luther University Halle‐Wittenberg Halle (Saale) Germany
| |
Collapse
|
7
|
Moreno A, Jiménez-Alesanco A, Ronda JC, Cádiz V, Galià M, Percec V, Abian O, Lligadas G. Dual Biochemically Breakable Drug Carriers from Programmed Telechelic Homopolymers. Biomacromolecules 2020; 21:4313-4325. [PMID: 32897693 DOI: 10.1021/acs.biomac.0c01113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Well-defined hydrophilic telechelic dibromo poly(triethylene glycol monomethyl ether acrylate)s were prepared by single-electron transfer living radical polymerization employing a hydrophobic difunctional initiator containing acetal and disulfide linkages. Although the resulting homopolymers have low hydrophobic contents (<8.5 wt % of the entire structure), they are able to self-assemble in water into nanoscale micellelike particles via chain folding. Acetal and disulfide linkages were demonstrated to be "keystone" units for their dual stimuli-responsive behavior under biochemically relevant conditions. Their site-selective middle-chain cleavage under both acidic pH and reductive conditions splits the homopolymer into two equal-sized fragments and results in the breakdown of the nanoassemblies. The drug loading/delivery potential of these nanoparticles was investigated using curcumine combining in vitro drug release, cytotoxicity, and cellular uptake studies with human cancer cell lines (HT-29 and HeLa). Importantly, this strategy may be extended to prepare innovative nanoplatforms based on hydrophilic homopolymers or random copolymers for intelligent drug delivery.
Collapse
Affiliation(s)
- Adrian Moreno
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Ana Jiménez-Alesanco
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Juan C Ronda
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Virginia Cádiz
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza 50018, Spain.,Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza 50018, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragon), Zaragoza 50009 Spain.,Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas Digestivas (CIBERehd), Madrid 28029, Spain.,Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza 50013, Spain
| | - Gerard Lligadas
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain.,Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|