1
|
Gazzotti S, Ortenzi MA, Farina H, Silvani A. Synthesis of Fluorine‐Containing, UV‐Responsive PLA‐Based Materials by Means of Functionalized DOX Monomer. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stefano Gazzotti
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 Milano 20133 Italy
- CRC Materiali Polimerici “LaMPo” Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 Milano 20133 Italy
| | - Marco Aldo Ortenzi
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 Milano 20133 Italy
- CRC Materiali Polimerici “LaMPo” Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 Milano 20133 Italy
| | - Hermes Farina
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 Milano 20133 Italy
- CRC Materiali Polimerici “LaMPo” Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 Milano 20133 Italy
| | - Alessandra Silvani
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 Milano 20133 Italy
- CRC Materiali Polimerici “LaMPo” Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 Milano 20133 Italy
| |
Collapse
|
2
|
Mele G, Mazzetto SE, Lomonaco D. Heterocyclic Compounds from Renewable Resources. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Gazzotti S, Adolfsson KH, Hakkarainen M, Farina H, Silvani A, Ortenzi MA. DOX mediated synthesis of PLA-co-PS graft copolymers with matrix-driven self-assembly in PLA-based blends. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
4
|
Wan X, Jiang J, Tu Y, Xu S, Li J, Lu H, Li Z, Xiong L, Li X, Zhao Y, Tu Y. A cascade strategy towards the direct synthesis of green polyesters with versatile functional groups. Polym Chem 2021. [DOI: 10.1039/d1py01124c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The cascade coupling of ROP and CP enables the facile synthesis of high functional group content biodegradable polyesters.
Collapse
Affiliation(s)
- Xueting Wan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Jiang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yanyan Tu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Siyuan Xu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jing Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Huanjun Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhikai Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lianhu Xiong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaohong Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Youliang Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yingfeng Tu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Gazzotti S, Ortenzi MA, Farina H, Silvani A. 1,3-Dioxolan-4-Ones as Promising Monomers for Aliphatic Polyesters: Metal-Free, in Bulk Preparation of PLA. Polymers (Basel) 2020; 12:E2396. [PMID: 33080938 PMCID: PMC7603121 DOI: 10.3390/polym12102396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
The first example of solvent-free, organocatalyzed, polymerization of 1,3-dioxolan-4-ones, used as easily accessible monomers for the synthesis of polylactic acid (PLA), is described here. An optimization of reaction conditions was carried out, with p-toluensulfonic acid emerging as the most efficient Brønsted acid catalyst. The reactivity of the monomers in the tested conditions was studied following the monomer conversion by 1H NMR and the molecular weight growth by SEC analysis. A double activation polymerization mechanism was proposed, pointing out the key role of the acid catalyst. The formation of acetal bridges was demonstrated, to different extents depending on the nature of the aldehyde or ketone employed for lactic acid protection. The polymer shows complete retention of stereochemistry, as well as good thermal properties and good polydispersity, albeit modest molecular weight.
Collapse
Affiliation(s)
- Stefano Gazzotti
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy; (M.A.O.); (H.F.); (A.S.)
- CRC Materiali Polimerici (LaMPo), Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Marco Aldo Ortenzi
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy; (M.A.O.); (H.F.); (A.S.)
- CRC Materiali Polimerici (LaMPo), Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Hermes Farina
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy; (M.A.O.); (H.F.); (A.S.)
- CRC Materiali Polimerici (LaMPo), Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Alessandra Silvani
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy; (M.A.O.); (H.F.); (A.S.)
- CRC Materiali Polimerici (LaMPo), Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| |
Collapse
|