1
|
Bayat M, Mardani H, Roghani-Mamaqani H, Hoogenboom R. Self-indicating polymers: a pathway to intelligent materials. Chem Soc Rev 2024; 53:4045-4085. [PMID: 38449438 DOI: 10.1039/d3cs00431g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Self-indicating polymers have emerged as a promising class of smart materials that possess the unique ability to undergo detectable variations in their physical or chemical properties in response to various stimuli. This article presents an overview of the most important mechanisms through which these materials exhibit self-indication, including aggregation, phase transition, covalent and non-covalent bond cleavage, isomerization, charge transfer, and energy transfer. Aggregation is a prevalent mechanism observed in self-indicating polymers, where changes in the degree of molecular organization result in variations in optical or electrical properties. Phase transition-induced self-indication relies on the transformation between different phases, such as liquid-to-solid or crystalline-to-amorphous transitions, leading to observable changes in color or conductivity. Covalent bond cleavage-based self-indicating polymers undergo controlled degradation or fragmentation upon exposure to specific triggers, resulting in noticeable variations in their structural or mechanical properties. Isomerization is another crucial mechanism exploited in self-indicating polymers, where the reversible transformation between the different isomeric forms induces detectable changes in fluorescence or absorption spectra. Charge transfer-based self-indicating polymers rely on the modulation of electron or hole transfer within the polymer backbone, manifesting as changes in electrical conductivity or redox properties. Energy transfer is an essential mechanism utilized by certain self-indicating polymers, where energy transfer between chromophores or fluorophores leads to variations in the emission characteristics. Furthermore, this review article highlights the diverse range of applications for self-indicating polymers. These materials find particular use in sensing and monitoring applications, where their responsive nature enables them to act as sensors for specific analytes, environmental parameters, or mechanical stress. Self-indicating polymers have also been used in the development of smart materials, including stimuli-responsive coatings, drug delivery systems, food sensors, wearable devices, and molecular switches. The unique combination of tunable properties and responsiveness makes self-indicating polymers highly promising for future advancements in the fields of biotechnology, materials science, and electronics.
Collapse
Affiliation(s)
- Mobina Bayat
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran.
| | - Hanieh Mardani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran.
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran.
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, S4-bis, B-9000 Ghent, Belgium.
| |
Collapse
|
2
|
Wei K, Wu Y, Cao X, Yang X, Tang B, Shan B. Dual dynamic bonds approach for polyurethane recycling and self-healing of emulsified asphalt. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163915. [PMID: 37149186 DOI: 10.1016/j.scitotenv.2023.163915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
To recycle polyurethane and extend the service life of polyurethane-modified emulsified asphalt, this study developed novel perspectives for a lower carbon-footprint and cleaner preparation of recyclable polyurethane (RWPU) and its modified emulsified asphalt (RPUA-x) by using self-emulsification and dual dynamic bonds. Particle dispersion and zeta potential tests reflected that the emulsions of RWPU and RPUA-x existed excellent dispersion and storage stability. Microscopic and thermal analyses indicated that RWPU possessed dynamic bonds and maintained thermal stability below 250 °C as anticipated. Concurrently, RWPU provided RPUA-x with a strong physical cross-linking network, and a homogeneous phase was observed in RPUA-x after drying. Self-healing and mechanical evaluation results revealed that the regeneration efficiencies of RWPU were 72.3 % (stress) and 100 % (strain), respectively, and the stress-strain healing efficiency of RPUA-x was >73 %. The energy dissipation performance and plastic damage principle of RWPU were investigated using cyclic tensile loading. The multiple self-healing mechanisms of RPUA-x were revealed through microexamination. Furthermore, the viscoelasticity of RPUA-x and variations in flow activation energy were determined based on Arrhenius fitting from dynamic shear rheometer tests. In conclusion, disulfide bonds and hydrogen bonds endow RWPU with remarkable regenerative properties and grant RPUA-x with both asphalt diffusion self-healing and dynamic reversible self-healing capabilities.
Collapse
Affiliation(s)
- Kuiling Wei
- School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Yan Wu
- School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Xuejuan Cao
- School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China; National and Local Joint Engineering Research Center of Transportation and Civil Engineering Materials, Chongqing Jiaotong University, Chongqing 400074, China
| | - Xiaoyu Yang
- School of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China
| | - Boming Tang
- School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China; National and Local Joint Engineering Research Center of Transportation and Civil Engineering Materials, Chongqing Jiaotong University, Chongqing 400074, China
| | - Bailin Shan
- School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| |
Collapse
|
3
|
Zhou B, Liu J, Huang X, Qiu X, Yang X, Shao H, Tang C, Zhang X. Mechanoluminescent-Triboelectric Bimodal Sensors for Self-Powered Sensing and Intelligent Control. NANO-MICRO LETTERS 2023; 15:72. [PMID: 36964430 PMCID: PMC10039194 DOI: 10.1007/s40820-023-01054-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Self-powered flexible devices with skin-like multiple sensing ability have attracted great attentions due to their broad applications in the Internet of Things (IoT). Various methods have been proposed to enhance mechano-optic or electric performance of the flexible devices; however, it remains challenging to realize the display and accurate recognition of motion trajectories for intelligent control. Here, we present a fully self-powered mechanoluminescent-triboelectric bimodal sensor based on micro-nanostructured mechanoluminescent elastomer, which can patterned-display the force trajectories. The deformable liquid metals used as stretchable electrode make the stress transfer stable through overall device to achieve outstanding mechanoluminescence (with a gray value of 107 under a stimulus force as low as 0.3 N and more than 2000 cycles reproducibility). Moreover, a microstructured surface is constructed which endows the resulted composite with significantly improved triboelectric performances (voltage increases from 8 to 24 V). Based on the excellent bimodal sensing performances and durability of the obtained composite, a highly reliable intelligent control system by machine learning has been developed for controlling trolley, providing an approach for advanced visual interaction devices and smart wearable electronics in the future IoT era.
Collapse
Affiliation(s)
- Bo Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jize Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xin Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xiaoyan Qiu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xin Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Hong Shao
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu, 610200, People's Republic of China
| | - Changyu Tang
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu, 610200, People's Republic of China.
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
4
|
Sugita H, Lu Y, Aoki D, Otsuka H, Mikami K. Theoretical and Experimental Investigations of Stable Arylfluorene-Based Radical-Type Mechanophores. Chemistry 2023; 29:e202203249. [PMID: 36575130 DOI: 10.1002/chem.202203249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Radical-type mechanophores (RMs) can undergo homolytic cleavage of their central C-C bonds upon exposure to mechanical forces, which affords radical species. Understanding the characteristics of these radical species allows bespoke mechanoresponsive materials to be designed and developed. The thermal stability of the central C-C bonds and the oxygen tolerance of the generated radical species are crucial characteristics that determine the functions and applicability of such RM-containing mechanoresponsive materials. In this paper, we report the synthesis and characterization of two series of arylfluorene-based RM derivatives, that is, 9,9'-bis(5-methyl-2-pyridyl)-9,9'-bifluorene (BPyF) and 9,9'-bis(4,6-diphenyl-2-triazyl)-9,9'-bifluorene (BTAF). BPyF and BTAF derivatives were synthesized without generating any peroxides initially, albeit that BPyF slowly converted to the corresponding peroxide in solution. DFT calculations revealed the importance of the thermodynamic stability and the values of the α-SOMO levels of the corresponding radical species for their thermal stability and oxygen tolerance. Furthermore, the mechanochromism of BTAF was demonstrated by ball-milling a BTAF-centered polymer, which was synthesized by atom-transfer radical polymerization (ATRP).
Collapse
Affiliation(s)
- Hajime Sugita
- Sagami Chemical Research Institute, 2743-1 Hayakawa, Ayase, Kanagawa, 252-1193, Japan.,Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yi Lu
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Koichiro Mikami
- Sagami Chemical Research Institute, 2743-1 Hayakawa, Ayase, Kanagawa, 252-1193, Japan
| |
Collapse
|
5
|
Tominaga R, Takeda Y, Kotera M, Suzuki Y, Matsumoto A. Non-destructive observation of internal structures of epoxy monolith and co-continuous network polymer using X-ray CT imaging for elucidation of their unique mechanical features and fracture mechanism. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Zhou W, Ren S, Zhang F, Gao X, Song K, Fang H, Ding Y. Reinforcement of boron–nitrogen coordinated polyurethane elastomers with silica nanoparticles. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Mao Y, Kubota Y, Feng R, Gong J, Ishigami A, Kobayashi Y, Watabe T, Aoki D, Otsuka H, Ito H. Structure Reconfigurable Mechanochromic Polymer with Shape Memory and Strain-Monitored Function Enabled by a Covalent Adaptable Network. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuchen Mao
- Research Center for GREEN Materials & Advanced Processing, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Yuto Kubota
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Ruiqi Feng
- Department of Polymeric and Organic Materials Engineering, Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Jin Gong
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Akira Ishigami
- Research Center for GREEN Materials & Advanced Processing, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Yutaka Kobayashi
- Research Center for GREEN Materials & Advanced Processing, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Takuma Watabe
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Hiroshi Ito
- Research Center for GREEN Materials & Advanced Processing, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
8
|
Yanada K, Aoki D, Otsuka H. Mechanochromic elastomers with different thermo- and mechano-responsive radical-type mechanophores. SOFT MATTER 2022; 18:3218-3225. [PMID: 35383787 DOI: 10.1039/d1sm01786a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To design tough soft materials, the introduction of sacrificial bonds into their skeleton is a useful method. The introduction of radical-type mechanophores (RMs), which generate coloured radicals in response to mechanical stimuli, as sacrificial bonds into the cross-linking points of elastomers is expected to be a powerful tool to elucidate the fracture mechanisms as well as the toughening of materials, given that the radicals generated from the RMs are coloured and can be quantitatively evaluated using electron paramagnetic resonance (EPR) measurements. In this study, to investigate the effect of the dynamic nature, i.e., the reactivity, of RMs introduced at the cross-linking points of polymer networks on their macroscopic mechanical properties, polymer networks cross-linked by two different RMs, a symmetric radical-type mechanophore (DFSN) and a non-symmetric radical-type mechanophore (CF/ABF), were synthesized and characterized. Compared to the polymer network cross-linked by DFSN, the network with CF/ABF exhibited higher thermal and mechanical responses, in other words much more sensitive to heat and mechanical force, resulting in better stress relaxation and energy-dissipation properties. These results demonstrate that the reactivity of the radical mechanophore at the cross-linking point is an important factor for designing polymer networks.
Collapse
Affiliation(s)
- Kosaku Yanada
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
9
|
Qiu W, Scofield JMP, Gurr PA, Qiao GG. Mechanochromophore-linked Polymeric Materials with Visible Color Changes. Macromol Rapid Commun 2022; 43:e2100866. [PMID: 35338794 DOI: 10.1002/marc.202100866] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/19/2022] [Indexed: 11/07/2022]
Abstract
Mechanical force as a type of stimuli for smart materials has obtained much attention in the past decade. Color-changing materials in response to mechanical stimuli have shown great potential in the applications such as sensors and displays. Mechanochromophore-linked polymeric materials, which are a growing sub-class of these materials, are discussed in detail in this review. Two main types of mechanochromophores which exhibit visible color change, summarized herein, involve either isomerization or radical generation mechanisms. This review focuses on their synthesis and incorporation into polymer matrices, the type of mechanical force used, factors affecting the mechanochromic properties, and their applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wenlian Qiu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Joel M P Scofield
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Paul A Gurr
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Greg G Qiao
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
10
|
Kasori R, Watabe T, Aoki D, Otsuka H. Enhancement of Mechanophore Activation by Electrostatic Interaction. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ryosuke Kasori
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takuma Watabe
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
11
|
Abstract
AbstractThis Account covers the recent progress made on heterocyclic mechanophores in the field of polymer mechanochemistry. In particular, the types of such mechanophores as well as the mechanisms and applications of their force-induced structural transformations are discussed and related perspectives and future challenges proposed.1 Introduction2 Types of Mechanophores3 Methods to Incorporate Heterocycle Mechanophores into Polymer Systems4 Mechanochemical Reactions of Heterocyclic Mechanophores4.1 Three-Membered-Ring Mechanophores4.2 Four-Membered-Ring Mechanophores4.3 Six-Membered-Ring Mechanophores4.4 Bicyclic Mechanophores5 Applications5.1 Cross-Linking of Polymer5.2 Degradable Polymer5.3 Mechanochromic Polymer6 Concluding Remarks and Outlook
Collapse
|
12
|
Mao Y, Kubota Y, Gong J, Kurose T, Ishigami A, Seshimo K, Watabe T, Aoki D, Otsuka H, Ito H. Mechanical Performance and Visual Fracture Warning Function of Mechanochromic Stimuli-Recovery Polymer Networks. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00904] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuchen Mao
- Research Center for GREEN Materials & Advanced Processing, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Yuto Kubota
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Jin Gong
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Takashi Kurose
- Research Center for GREEN Materials & Advanced Processing, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Akira Ishigami
- Research Center for GREEN Materials & Advanced Processing, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Kota Seshimo
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Takuma Watabe
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Hiroshi Ito
- Research Center for GREEN Materials & Advanced Processing, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|