1
|
Murphy JG, Raybin JG, Sibener SJ. Correlating polymer structure, dynamics, and function with atomic force microscopy. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Julia G. Murphy
- The James Franck Institute and Department of Chemistry The University of Chicago Chicago Illinois USA
| | - Jonathan G. Raybin
- The James Franck Institute and Department of Chemistry The University of Chicago Chicago Illinois USA
| | - Steven J. Sibener
- The James Franck Institute and Department of Chemistry The University of Chicago Chicago Illinois USA
| |
Collapse
|
2
|
Zhou J, Thapar V, Chen Y, Wu BX, Craig GSW, Nealey PF, Hur SM, Chang TH, Xiong S. Self-Aligned Assembly of a Poly(2-vinylpyridine)- b-Polystyrene- b-Poly(2-vinylpyridine) Triblock Copolymer on Graphene Nanoribbons. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41190-41199. [PMID: 34470104 DOI: 10.1021/acsami.1c08940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Directed self-assembly (DSA) of block copolymers is one of the most promising patterning techniques for patterning sub-10 nm features. However, at such small feature sizes, it is becoming increasingly difficult to fabricate the guiding pattern for the DSA process, and it is necessary to explore alternative guiding methods for DSA to achieve long-range ordered alignment. Here, we report the self-aligned assembly of a triblock copolymer, poly(2-vinylpyridine)-b-polystyrene-b-poly(2-vinylpyridine) (P2VP-b-PS-b-P2VP) on neutral graphene nanoribbons with the gap consisting of a P2VP-preferential silicon oxide (SiO2) substrate via solvent vapor annealing. The assembled P2VP-b-PS-b-P2VP demonstrated long-range, one-dimensional alignment on the graphene substrate in a direction perpendicular to the boundary of the graphene and substrate with a half-pitch size of 8 nm, which greatly alleviates the lithography resolution required for traditional chemoepitaxy DSA. A wide processing window is demonstrated with the gap between graphene stripes varying from 10 to 100 nm, overcoming the restriction on widths of guiding patterns to have commensurate domain spacing. When the gap was reduced to 10 nm, P2VP-b-PS-b-P2VP formed a straight-line pattern on both the graphene and the substrate. Monte Carlo simulations showed that the self-aligned assembly of the triblock copolymer on the graphene nanoribbons is guided at the boundary of parallel and perpendicular lamellae on graphene and SiO2, respectively. Simulations also indicate that the swelling of a system allows for rapid rearrangement of chains and quickly anneal any misaligned grains and defects. The effect of the interaction strength between SiO2 and P2VP on the self-assembly is systematically investigated in simulations.
Collapse
Affiliation(s)
- Jing Zhou
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Vikram Thapar
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
| | - Yu Chen
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Bi-Xian Wu
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Gordon S W Craig
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Paul F Nealey
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Su-Mi Hur
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
| | - Tzu-Hsuan Chang
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Shisheng Xiong
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Robertson M, Zhou Q, Ye C, Qiang Z. Developing Anisotropy in Self-Assembled Block Copolymers: Methods, Properties, and Applications. Macromol Rapid Commun 2021; 42:e2100300. [PMID: 34272778 DOI: 10.1002/marc.202100300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/23/2021] [Indexed: 01/03/2023]
Abstract
Block copolymers (BCPs) self-assembly has continually attracted interest as a means to provide bottom-up control over nanostructures. While various methods have been demonstrated for efficiently ordering BCP nanodomains, most of them do not generically afford control of nanostructural orientation. For many applications of BCPs, such as energy storage, microelectronics, and separation membranes, alignment of nanodomains is a key requirement for enabling their practical use or enhancing materials performance. This review focuses on summarizing research progress on the development of anisotropy in BCP systems, covering a variety of topics from established aligning techniques, resultant material properties, and the associated applications. Specifically, the significance of aligning nanostructures and the anisotropic properties of BCPs is discussed and highlighted by demonstrating a few promising applications. Finally, the challenges and outlook are presented to further implement aligned BCPs into practical nanotechnological applications, where exciting opportunities exist.
Collapse
Affiliation(s)
- Mark Robertson
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Qingya Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Changhuai Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| |
Collapse
|