1
|
Heinz S, Gemmer L, Janka O, Gallei M. Ferrocene-Modified Polyacrylonitrile-Containing Block Copolymers as Preceramic Materials. Polymers (Basel) 2024; 16:2142. [PMID: 39125169 PMCID: PMC11314306 DOI: 10.3390/polym16152142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
In the pursuit of fabricating functional ceramic nanostructures, the design of preceramic functional polymers has garnered significant interest. With their easily adaptable chemical composition, molecular structure, and processing versatility, these polymers hold immense potential in this field. Our study succeeded in focusing on synthesizing ferrocene-containing block copolymers (BCPs) based on polyacrylonitrile (PAN). The synthesis is accomplished via different poly(acrylonitrile-block-methacrylate)s via atom transfer radical polymerization (ATRP) and activators regenerated by electron transfer ATRP (ARGET ATRP) for the PAN macroinitiators. The molecular weights of the BCPs range from 44 to 82 kDa with dispersities between 1.19 and 1.5 as determined by SEC measurements. The volume fraction of the PMMA block ranges from 0.16 to 0.75 as determined by NMR. The post-modification of the BCPs using 3-ferrocenyl propylamine has led to the creation of redox-responsive preceramic polymers. The thermal stabilization of the polymer film has resulted in stabilized morphologies based on the oxidative PAN chemistry. The final pyrolysis of the sacrificial block segment and conversion of the metallopolymer has led to the formation of a porous carbon network with an iron oxide functionalized surface, investigated by scanning electron microscopy (SEM), energy dispersive X-ray mapping (EDX), and powder X-ray diffraction (PXRD). These findings could have significant implications in various applications, demonstrating the practical value of our research in convenient ceramic material design.
Collapse
Affiliation(s)
- Sebastian Heinz
- Polymer Chemistry, Campus C4 2, Saarland University, 66123 Saarbrücken, Germany; (S.H.); (L.G.)
| | - Lea Gemmer
- Polymer Chemistry, Campus C4 2, Saarland University, 66123 Saarbrücken, Germany; (S.H.); (L.G.)
| | - Oliver Janka
- Inorganic Solid State Chemistry, Campus C4 1, Saarland University, 66123 Saarbrücken, Germany;
| | - Markus Gallei
- Polymer Chemistry, Campus C4 2, Saarland University, 66123 Saarbrücken, Germany; (S.H.); (L.G.)
- Saarene, Campus C4 2, Saarland Center for Energy Materials and Sustainability, 66123 Saarbrücken, Germany
| |
Collapse
|
2
|
Kang S, Lee J, Yoon H, Jang J, Kim E, Kim JK. Tetragonally Packed Inverted Cylindrical Microdomains from Binary Block Copolymer Blends with Enhanced Hydrogen Bonding. ACS Macro Lett 2023:915-920. [PMID: 37363940 DOI: 10.1021/acsmacrolett.3c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Hexagonally packed (HEX) cylindrical microdomains can be obtained through the self-assembly of block copolymers (BCPs) with a moderately asymmetric volume fraction of one block (f), resulting in the formation of minor cylinders. However, for next-generation lithography and high-density memory devices, it is desirable to obtain densely and tetragonally packed inverted cylindrical microdomains, which are composed of the major block in the minor matrix. The inverted cylinders differ from conventional HEX cylinders, which consist of the minor block in the matrix of the major block. In this study, we achieved this objective by utilizing a binary blend of a polystyrene-b-poly(4-vinylpyridine) copolymer (S4VP) and polystyrene-b-poly(4-hydroxystyrene) copolymer (SHS), where the P4VP block exhibited a strong hydrogen bonding interaction with the PHS block. By carefully controlling the molecular weight ratio of S4VP and SHS as well as the blend composition, we successfully observed tetragonally packed inverted PS cylinders with a square cross-section at a volume fraction of PS of 0.69.
Collapse
Affiliation(s)
- Sukwon Kang
- National Creative Research Initiative Center for Hybrid Nano Materials by High-level Architectural Design of Block Copolymer, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jaeyong Lee
- National Creative Research Initiative Center for Hybrid Nano Materials by High-level Architectural Design of Block Copolymer, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyeongkeon Yoon
- National Creative Research Initiative Center for Hybrid Nano Materials by High-level Architectural Design of Block Copolymer, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Junho Jang
- National Creative Research Initiative Center for Hybrid Nano Materials by High-level Architectural Design of Block Copolymer, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Eunyoung Kim
- National Creative Research Initiative Center for Hybrid Nano Materials by High-level Architectural Design of Block Copolymer, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jin Kon Kim
- National Creative Research Initiative Center for Hybrid Nano Materials by High-level Architectural Design of Block Copolymer, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
3
|
Angelopoulou PP, Moutsios I, Manesi GM, Ivanov DA, Sakellariou G, Avgeropoulos A. Designing high χ copolymer materials for nanotechnology applications: A systematic bulk vs. thin films approach. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Li L, Xu Z, Li W. Emergence of Connected Binary Spherical Structures from the Self-assembly of an AB 2C Four-Arm Star Terpolymer. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luyang Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zhanwen Xu
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Influence of Interpenetrating Chains on Rigid Domain Dimensions in Siloxane-Based Block-Copolymers. Polymers (Basel) 2022; 14:polym14194048. [PMID: 36235995 PMCID: PMC9572696 DOI: 10.3390/polym14194048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
1H spin-diffusion solid-state NMR was utilized to elucidate the domain size in multiblock-copolymers (BCPs) poly-(block poly(dimethylsiloxane)-block ladder-like poly(phenylsiloxane)) and poly-(block poly((3,3′,3″-trifluoropropyl-methyl)siloxane)-block ladder-like poly(phenylsiloxane). It was found that these BCPs form worm-like morphology with rigid cylinders dispersed in amorphous matrix. By using the combination of solid-state NMR techniques such as 13C CP/MAS, 13C direct-polarization MAS and 2D 1H EXSY, it was shown that the main factor which governs the diameter value of these rigid domains is the presence of interpenetrating segments of soft blocks. The presence of such interpenetrating chains leads to an increase of rigid domain diameter.
Collapse
|
6
|
Yang J, Dong Q, Liu M, Li W. Universality and Specificity in the Self-Assembly of Cylinder-Forming Block Copolymers under Cylindrical Confinement. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Junying Yang
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Qingshu Dong
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Meijiao Liu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
Yan XY, Guo QY, Liu XY, Wang Y, Wang J, Su Z, Huang J, Bian F, Lin H, Huang M, Lin Z, Liu T, Liu Y, Cheng SZD. Superlattice Engineering with Chemically Precise Molecular Building Blocks. J Am Chem Soc 2021; 143:21613-21621. [PMID: 34913335 DOI: 10.1021/jacs.1c09831] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Correlating nanoscale building blocks with mesoscale superlattices, mimicking metal alloys, a rational engineering strategy becomes critical to generate designed periodicity with emergent properties. For molecule-based superlattices, nevertheless, nonrigid molecular features and multistep self-assembly make the molecule-to-superlattice correlation less straightforward. In addition, single component systems possess intrinsically limited volume asymmetry of self-assembled spherical motifs (also known as "mesoatoms"), further hampering novel superlattices' emergence. In the current work, we demonstrate that properly designed molecular systems could generate a spectrum of unconventional superlattices. Four categories of giant molecules are presented. We systematically explore the lattice-forming principles in unary and binary systems, unveiling how molecular stoichiometry, topology, and size differences impact the mesoatoms and further toward their superlattices. The presence of novel superlattices helps to correlate with Frank-Kasper phases previously discovered in soft matter. We envision the present work offers new insights about how complex superlattices could be rationally fabricated by scalable-preparation and easy-to-process materials.
Collapse
Affiliation(s)
- Xiao-Yun Yan
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325-3909, United States
| | - Qing-Yun Guo
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325-3909, United States
| | - Xian-You Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yicong Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jing Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zebin Su
- Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325-3909, United States
| | - Jiahao Huang
- Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325-3909, United States
| | - Fenggang Bian
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Haixin Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China.,Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingjun Huang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhiwei Lin
- Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325-3909, United States
| | - Tong Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325-3909, United States
| | - Yuchu Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325-3909, United States
| | - Stephen Z D Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Polymer Science, School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|
8
|
Kang S, Lee J, Kim E, Seo Y, Choi C, Kim JK. Inverted Cylindrical Microdomains from Binary Block Copolymer Blends Capable of Hydrogen Bonding. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sukwon Kang
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jaeyong Lee
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Eunyoung Kim
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Yeseong Seo
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Chungryong Choi
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jin Kon Kim
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
9
|
Qiang Y, Li W. Accelerated Method of Self-Consistent Field Theory for the Study of Gaussian Ring-Type Block Copolymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yicheng Qiang
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
10
|
Seo Y, Woo D, Li L, Li W, Kim JK. Phase Behavior of PS-(PS- b-P2VP) 3 Miktoarm Star Copolymer. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yeseong Seo
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Dokyung Woo
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Luyang Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jin Kon Kim
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| |
Collapse
|