1
|
Methling R, Greiter M, Al-Zawity J, Müller M, Schönherr H, Kuckling D. Salt-Responsive Switchable Block Copolymer Brushes with Antibacterial and Antifouling Properties. Macromol Biosci 2024:e2400261. [PMID: 39601460 DOI: 10.1002/mabi.202400261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/14/2024] [Indexed: 11/29/2024]
Abstract
A strategy for multifunctional biosurfaces exploiting multiblock copolymers and the antipolyelectrolyte effect is reported. Combining a polyzwitterionic/antifouling and a polycationic/antibacterial block with a central anchoring block for attachment to titanium oxide surfaces affords surface coatings that exhibit antifouling properties against proteins and allow for surface regeneration by clearing adhering proteins by employing a salt washing step. The surfaces also kill bacteria by contact killing, which is aided by a nonfouling block. The synthesis of block copolymers of 4-vinyl pyridine (VP), dimethyl 4-vinylbenzyl phosphonate (DMVBP), and 4-vinylbenzyltrimethyl ammonium chloride (TMA) is achieved on the multigram scale via RAFT polymerization with good end group retention and narrow dispersities. By polymer analogous reactions, poly(4-vinyl pyridinium propane sulfonate-block-4-vinylbenzyl phosphonic acid-block-4-vinylbenzyl trimethylammonium chloride) (P(VSP64-b-PA14-b-TMA64)) is obtained. The antifouling properties against the model protein pepsin and the salt-induced surface regeneration are shown in surface plasmon resonance (SPR) experiments, while independently the antibacterial and antifouling properties of coated titanium substrates are successfully tested in preliminary microbiological assays against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). This strategy may contribute to the development of long-term effective antibacterial implant surface coatings to suppress biomedical device-associated infections.
Collapse
Affiliation(s)
- Rafael Methling
- Department of Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Michael Greiter
- Physical Chemistry I, Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| | - Jiwar Al-Zawity
- Physical Chemistry I, Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| | - Mareike Müller
- Physical Chemistry I, Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| | - Holger Schönherr
- Physical Chemistry I, Research Center of Micro and Nanochemistry and (Bio)Technology (Cμ), University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| | - Dirk Kuckling
- Department of Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| |
Collapse
|
2
|
Ivaldi C, Ospina Guarin VM, Antonioli D, Zuccheri G, Sparnacci K, Gianotti V, Perego M, Chiarcos R, Laus M. Polystyrene Brush Evolution by Grafting to Reaction on Deglazed and Not-Deglazed Silicon Substrates. Macromol Rapid Commun 2024; 45:e2400288. [PMID: 39012272 DOI: 10.1002/marc.202400288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/13/2024] [Indexed: 07/17/2024]
Abstract
Two model substrates for the grafting to reaction are considered: not-deglazed silicon, whose surface is coated by a thin oxide layer with reactive silanol groups on its surface; and deglazed silicon, where the oxide layer is removed by treatment with hydrofluoric acid. The reactive polymers are hydroxy-terminated polystyrenes with molecular weights ranging from 3.9 to 13.9 kg mol⁻1. The grafting to reaction is carried out at different temperatures and for different periods of time on the two different substrates. The thickness and the thermal stability of the resulting brushes are evaluated. Furthermore, the grafting of a highly dispersed system is simulated by blending two polymers with different molecular weights. Although the brush thickness growth is found to be faster on deglazed silicon, the preferential grafting of short chains occurs with equal chain selection propensity on both substrates.
Collapse
Affiliation(s)
- Chiara Ivaldi
- Department for Sustainable Development and Ecological Transition (DISSTE), University of Eastern Piedmont, P.zza S. Eusebio 5, Vercelli, 13100, Italy
| | - Viviana Maria Ospina Guarin
- Department of Science and Technology Innovation (DISIT), University of Eastern Piedmont, V. le T. Michel 11, Alessandria, 15121, Italy
| | - Diego Antonioli
- Department of Science and Technology Innovation (DISIT), University of Eastern Piedmont, V. le T. Michel 11, Alessandria, 15121, Italy
| | - Giampaolo Zuccheri
- Department of Pharmacy and Biotechnology and Interdepartmental Center for Industrial Research on Health Sciences & Technologies, University of Bologna, V. San Donato 19/2, Bologna, 40127, Italy
| | - Katia Sparnacci
- Department of Science and Technology Innovation (DISIT), University of Eastern Piedmont, V. le T. Michel 11, Alessandria, 15121, Italy
| | - Valentina Gianotti
- Department for Sustainable Development and Ecological Transition (DISSTE), University of Eastern Piedmont, P.zza S. Eusebio 5, Vercelli, 13100, Italy
| | - Michele Perego
- Institute for Microelectronics and Microsystems (IMM), National Research Council of Italy (CNR), Via C. Olivetti 2, Agrate-Brianza, 20864, Italy
| | - Riccardo Chiarcos
- Department of Science and Technology Innovation (DISIT), University of Eastern Piedmont, V. le T. Michel 11, Alessandria, 15121, Italy
| | - Michele Laus
- Department of Science and Technology Innovation (DISIT), University of Eastern Piedmont, V. le T. Michel 11, Alessandria, 15121, Italy
| |
Collapse
|
3
|
Yu B, Chang BS, Loo WS, Dhuey S, O’Reilly P, Ashby PD, Connolly MD, Tikhomirov G, Zuckermann RN, Ruiz R. Nanopatterned Monolayers of Bioinspired, Sequence-Defined Polypeptoid Brushes for Semiconductor/Bio Interfaces. ACS NANO 2024; 18:7411-7423. [PMID: 38412617 PMCID: PMC10938923 DOI: 10.1021/acsnano.3c10204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
The ability to control and manipulate semiconductor/bio interfaces is essential to enable biological nanofabrication pathways and bioelectronic devices. Traditional surface functionalization methods, such as self-assembled monolayers (SAMs), provide limited customization for these interfaces. Polymer brushes offer a wider range of chemistries, but choices that maintain compatibility with both lithographic patterning and biological systems are scarce. Here, we developed a class of bioinspired, sequence-defined polymers, i.e., polypeptoids, as tailored polymer brushes for surface modification of semiconductor substrates. Polypeptoids featuring a terminal hydroxyl (-OH) group are designed and synthesized for efficient melt grafting onto the native oxide layer of Si substrates, forming ultrathin (∼1 nm) monolayers. By programming monomer chemistry, our polypeptoid brush platform offers versatile surface modification, including adjustments to surface energy, passivation, preferential biomolecule attachment, and specific biomolecule binding. Importantly, the polypeptoid brush monolayers remain compatible with electron-beam lithographic patterning and retain their chemical characteristics even under harsh lithographic conditions. Electron-beam lithography is used over polypeptoid brushes to generate highly precise, binary nanoscale patterns with localized functionality for the selective immobilization (or passivation) of biomacromolecules, such as DNA origami or streptavidin, onto addressable arrays. This surface modification strategy with bioinspired, sequence-defined polypeptoid brushes enables monomer-level control over surface properties with a large parameter space of monomer chemistry and sequence and therefore is a highly versatile platform to precisely engineer semiconductor/bio interfaces for bioelectronics applications.
Collapse
Affiliation(s)
- Beihang Yu
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Boyce S. Chang
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Whitney S. Loo
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Prizker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Scott Dhuey
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | | | - Paul D. Ashby
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Michael D. Connolly
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Grigory Tikhomirov
- Department
of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94709, United States
| | - Ronald N. Zuckermann
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Ricardo Ruiz
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Chang B, Loo WS, Yu B, Dhuey S, Wan L, Nealey PF, Ruiz R. Sequential Brush Grafting for Chemically and Dimensionally Tolerant Directed Self-Assembly of Block Copolymers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2020-2029. [PMID: 36534025 PMCID: PMC9837782 DOI: 10.1021/acsami.2c16508] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
We report a method for the directed self-assembly (DSA) of block copolymers (BCPs) in which a first BCP film deploys homopolymer brushes, or "inks", that sequentially graft onto the substrate's surface via the interpenetration of polymer molecules during the thermal annealing of the polymer film on top of existing polymer brushes. By selecting polymer "inks" with the desired chemistry and appropriate relative molecular weights, it is possible to use brush interpenetration as a powerful technique to generate self-registered chemical contrast patterns at the same frequency as that of the domains of the BCP. The result is a process with a higher tolerance to dimensional and chemical imperfections in the guiding patterns, which we showcase by implementing DSA using homopolymer brushes for the guiding features as opposed to more robust cross-linkable mats. We find that the use of "inks" does not compromise the line width roughness, and the quality of the DSA as a lithographic mask is verified by implementing a robust "dry lift-off" pattern transfer.
Collapse
Affiliation(s)
- Boyce
S. Chang
- Molecular
Foundry, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Whitney S. Loo
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Beihang Yu
- Molecular
Foundry, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Scott Dhuey
- Molecular
Foundry, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Lei Wan
- Western
Digital, San Jose, California 95119, United States
| | - Paul F. Nealey
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Materials
Sciences Division, Argonne National Lab, Lemont, Illinois 60439, United States
| | - Ricardo Ruiz
- Molecular
Foundry, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Chiarcos R, Perego M, Laus M. Polymer Brushes by Grafting to Reaction in Melt: New Insights into the Mechanism. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Riccardo Chiarcos
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT) Università del Piemonte Orientale (UPO) Viale T. Michel 11 Alessandria 15121 Italy
| | - Michele Perego
- CNR‐IMM Unit of Agrate Brianza Via C. Olivetti 2 Agrate Brianza 20864 Italy
| | - Michele Laus
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT) Università del Piemonte Orientale (UPO) Viale T. Michel 11 Alessandria 15121 Italy
| |
Collapse
|
6
|
Chiarcos R, Antonioli D, Gianotti V, Laus M, Munaò G, Milano G, De Nicola A, Perego M. Short vs. long chains competition during “ grafting to” process from melt. Polym Chem 2022. [DOI: 10.1039/d2py00364c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A preferential grafting of short chains occurs during the “grafting to” reaction of hydroxy terminated P(S-st-MMA) blends consisting of short and long chains. The enrichment is enhanced when the chain length difference increases.
Collapse
Affiliation(s)
- Riccardo Chiarcos
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Diego Antonioli
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Valentina Gianotti
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Michele Laus
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Gianmarco Munaò
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giuseppe Milano
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples 80125, Italy
| | - Antonio De Nicola
- Scuola Superiore Meridionale, University of Naples Federico II, Largo S. Marcellino 10, Naples 80138, Italy
| | - Michele Perego
- CNR-IMM, Unit of Agrate Brianza, Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| |
Collapse
|
7
|
Chiarcos R, Antonioli D, Ospina V, Laus M, Perego M, Gianotti V. Quantification of molecular weight discrimination in grafting to reactions from ultrathin polymer films by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Analyst 2021; 146:6145-6155. [PMID: 34487131 DOI: 10.1039/d1an01329g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In the present study, a reliable and robust method was developed to quantify the molecular weight discrimination that can occur in grafting to reactions via indirect MALDI-TOF quantification of the molecular weights of grafted chains by comparing the characteristics of the polymeric material before the grafting reaction with those of the unreacted material recovered after grafting. Two polystyrene samples with different molecular weights and narrow molecular weight distributions were employed to prepare model blends that were grafted to silicon wafers and an analytical method was developed and validated to assess and quantify the modification of the molecular weight distribution that takes place during the grafting to process. Particular attention was paid to the standardization of the sample treatment and to find the best data collection and calibration methodologies in order to have statistically significant data even in the presence of a very scarce amount of the sample. Furthermore, to evaluate the accuracy of the analytical procedure, the lack of suitable standard and certified materials required a further experiment to be carried out by comparing the new optimized MALDI-TOF method and direct measurements using TGA-GC-MS on a model blend containing deuterated and hydrogenated polystyrene samples with appropriate molecular weights and distributions. The optimized method was applied on samples obtained by a thermally induced grafting to reaction from ultrathin polymer films and, for the first time, to our knowledge, an enrichment effect occurring in the ultrathin grafted layer obtained from a melt was evidenced.
Collapse
Affiliation(s)
- Riccardo Chiarcos
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Diego Antonioli
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Viviana Ospina
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Michele Laus
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Michele Perego
- Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| | - Valentina Gianotti
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|
8
|
Antonioli D, Chiarcos R, Gianotti V, Terragno M, Laus M, Munaò G, Milano G, De Nicola A, Perego M. Inside the brush: partition by molecular weight in grafting to reactions from melt. Polym Chem 2021. [DOI: 10.1039/d1py01303c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A substantial partition by molecular weight takes place during the grafting to reactions.
Collapse
Affiliation(s)
- Diego Antonioli
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Riccardo Chiarcos
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
- CNR-IMM, Unit of Agrate Brianza, Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| | - Valentina Gianotti
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Margherita Terragno
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Michele Laus
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Gianmarco Munaò
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giuseppe Milano
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples 80125, Italy
| | - Antonio De Nicola
- Dipartimento di Chimica e Biologia “A. Zambelli”, Universitá degli Studi di Salerno, via G. Paolo II 134, 84084, Fisciano, SA, Italy
| | - Michele Perego
- CNR-IMM, Unit of Agrate Brianza, Via C. Olivetti 2, 20864 Agrate Brianza, Italy
| |
Collapse
|