1
|
Chen M, You S, Guo T, Ren H, Zhu L, Wang P, Sheng W, Gong C, Li W. CuBr-mediated surface-initiated controlled radical polymerization in air. Chem Sci 2024; 15:19604-19608. [PMID: 39568887 PMCID: PMC11575556 DOI: 10.1039/d4sc06012a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024] Open
Abstract
Herein, we present a straightforward CuBr-mediated surface-initiated controlled radical polymerization (SI-CRP) method for fabricating polymer brushes using microliter volumes of reaction solution in air and at room temperature. The key advantage of this method is its ability to rapidly grow polymer brushes with oxygen tolerance, driven by the controlled disproportionation of CuI into CuII and Cu0 by CuBr and ligand. We demonstrate the successful preparation of homo-, block, patterned, and wafer-scale polymer brushes. Additionally, the catalyst in CuBr-mediated SI-CRP is reusable, long-lasting, and compatible with various monomers. This work broadens the potential of CuBr for polymer brush growth, making it accessible to both experts and non-experts.
Collapse
Affiliation(s)
- Menglu Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Shuai You
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Tingting Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Haohao Ren
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Longzu Zhu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Peize Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Wenbo Sheng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Chenliang Gong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Wei Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
2
|
Lee D, Wang H, Jiang SY, Verduzco R. Versatile Light-Mediated Synthesis of Degradable Bottlebrush Polymers Using α-Lipoic Acid. Angew Chem Int Ed Engl 2024; 63:e202409323. [PMID: 39150823 DOI: 10.1002/anie.202409323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/18/2024]
Abstract
Bottlebrush polymers have a variety of useful properties including a high entanglement molecular weight, low Young's modulus, and rapid kinetics for self-assembly. However, the translation of bottlebrushes to real-world applications is limited by complex, multi-step synthetic pathways and polymerization reactions that rely on air-sensitive catalysts. Additionally, most bottlebrushes are non-degradable. Herein, we report an inexpensive, versatile, and simple approach to synthesize degradable bottlebrush polymers under mild reaction conditions. Our approach relies on the "grafting-through" polymerization of α-lipoic acid (LA)-functionalized macromonomers. These macromonomers can be polymerized under mild, catalyst-free conditions, and due to reversibility of the disulfide bond in LA, the resulting bottlebrush polymers can be depolymerized by cleaving disulfide backbone bonds. Bottlebrushes with various side-chain chemistries can be prepared through the atom transfer radical polymerization (ATRP) of LA-functionalized macromonomers, and the backbone length is governed by the macromonomer molecular weight and solvent polarity. We also demonstrate that LA-functionalized macromonomers can be copolymerized with acrylates to form degradable bottlebrush networks. This work demonstrates the preparation of degradable bottlebrush polymers with a variety of side-chain chemistries and provides insight into the light-mediated grafting-through polymerization of dithiolane-functionalized macromonomers.
Collapse
Affiliation(s)
- Dongjoo Lee
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St, 77005, Houston, TX, United States
| | - Hanqing Wang
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St, 77005, Houston, TX, United States
| | - Shu-Yan Jiang
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St, 77005, Houston, TX, United States
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St, 77005, Houston, TX, United States
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St, 77005, Houston, TX, United States
| |
Collapse
|
3
|
Zhang J, Jiang X, Luo W, Mo Y, Dai C, Zhu L. PEGA-BA@Ce6@PFCE Micelles as Oxygen Nanoshuttles for Tumor Hypoxia Relief and Enhanced Photodynamic Therapy. Molecules 2023; 28:6697. [PMID: 37764473 PMCID: PMC10535279 DOI: 10.3390/molecules28186697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/27/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Tumor hypoxia, which is mainly caused by the inefficient microvascular systems induced by rapid tumor growth, is a common characteristic of most solid tumors and has been found to hinder treatment outcomes for many types of cancer therapeutics. In this study, an amphiphilic block copolymer, poly (ethylene glycol) methyl ether acrylate-block-n-butyl acrylate (PEGA-BA), was prepared via the ATRP method and self-assembled into core-shell micelles as nano radiosensitizers. These micelles encapsulated a photosensitizer, Chlorin e6 (Ce6), and demonstrated well-defined morphology, a uniform size distribution, and high oxygen loading capacity. Cell experiments showed that PEGA-BA@Ce6@PFCE micelles could effectively enter cells. Further in vitro anticancer studies demonstrated that the PEGA-BA@Ce6@PFCE micelles significantly suppressed the tumor cell survival rate when exposed to a laser.
Collapse
Affiliation(s)
- Junan Zhang
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.Z.); (W.L.); (Y.M.)
| | - Xiaoyun Jiang
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.Z.); (W.L.); (Y.M.)
| | - Wenyue Luo
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.Z.); (W.L.); (Y.M.)
| | - Yongjie Mo
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.Z.); (W.L.); (Y.M.)
| | - Chunyan Dai
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.Z.); (W.L.); (Y.M.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Haikou 571158, China
| | - Linhua Zhu
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.Z.); (W.L.); (Y.M.)
- Key Laboratory of Functional Organic Polymers of Haikou, Haikou 571158, China
| |
Collapse
|
4
|
Jazani AM, Schild DJ, Sobieski J, Hu X, Matyjaszewski K. Visible Light-ATRP Driven by Tris(2-Pyridylmethyl)Amine (TPMA) Impurities in the Open Air. Macromol Rapid Commun 2023; 44:e2200855. [PMID: 36471106 DOI: 10.1002/marc.202200855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Atom transfer radical polymerization (ATRP) of oligo(ethylene oxide) monomethyl ether methacrylate (OEOMA500 ) in water is enabled using CuBr2 with tris(2-pyridylmethyl)amine (TPMA) as a ligand under blue or green-light irradiation without requiring any additional reagent, such as a photo-reductant, or the need for prior deoxygenation. Polymers with low dispersity (Đ = 1.18-1.25) are synthesized at high conversion (>95%) using TPMA from three different suppliers, while no polymerization occurred with TPMA is synthesized and purified in the laboratory. Based on spectroscopic studies, it is proposed that TPMA impurities (i.e., imine and nitrone dipyridine), which absorb blue and green light, can act as photosensitive co-catalyst(s) in a light region where neither pure TPMA nor [(TPMA)CuBr]+ absorbs light.
Collapse
Affiliation(s)
- Arman Moini Jazani
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Dirk J Schild
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Julian Sobieski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Xiaolei Hu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
5
|
Janata M, Čadová E, Johnson JW, Raus V. Diminishing the catalyst concentration in the Cu(0)‐
RDRP
and
ATRP
synthesis of well‐defined low‐molecular weight poly(glycidyl methacrylate). JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20230087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Miroslav Janata
- Institute of Macromolecular Chemistry Czech Academy of Sciences Heyrovského nám. 2 Prague 6 162 06 Czech Republic
| | - Eva Čadová
- Institute of Macromolecular Chemistry Czech Academy of Sciences Heyrovského nám. 2 Prague 6 162 06 Czech Republic
| | - Jeffery W. Johnson
- Axalta Coating Systems Global Innovation Center Philadelphia PA 19112 USA
| | - Vladimír Raus
- Institute of Macromolecular Chemistry Czech Academy of Sciences Heyrovského nám. 2 Prague 6 162 06 Czech Republic
| |
Collapse
|
6
|
Parkatzidis K, Truong NP, Whitfield R, Campi CE, Grimm-Lebsanft B, Buchenau S, Rübhausen MA, Harrisson S, Konkolewicz D, Schindler S, Anastasaki A. Oxygen-Enhanced Atom Transfer Radical Polymerization through the Formation of a Copper Superoxido Complex. J Am Chem Soc 2023; 145:1906-1915. [PMID: 36626247 DOI: 10.1021/jacs.2c11757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In controlled radical polymerization, oxygen is typically regarded as an undesirable component resulting in terminated polymer chains, deactivated catalysts, and subsequent cessation of the polymerization. Here, we report an unusual atom transfer radical polymerization whereby oxygen favors the polymerization by triggering the in situ transformation of CuBr/L to reactive superoxido species at room temperature. Through a superoxido ARGET-ATRP mechanism, an order of magnitude faster polymerization rate and a rapid and complete initiator consumption can be achieved as opposed to when unoxidized CuBr/L was instead employed. Very high end-group fidelity has been demonstrated by mass-spectrometry and one-pot synthesis of block and multiblock copolymers while pushing the reactions to reach near-quantitative conversions in all steps. A high molecular weight polymer could also be targeted (DPn = 6400) without compromising the control over the molar mass distributions (Đ < 1.20), even at an extremely low copper concentration (4.5 ppm). The versatility of the technique was demonstrated by the polymerization of various monomers in a controlled fashion. Notably, the efficiency of our methodology is unaffected by the purity of the starting CuBr, and even a brown highly-oxidized 15-year-old CuBr reagent enabled a rapid and controlled polymerization with a final dispersity of 1.07, thus not only reducing associated costs but also omitting the need for rigorous catalyst purification prior to polymerization.
Collapse
Affiliation(s)
- Kostas Parkatzidis
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| | - Nghia P Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| | - Richard Whitfield
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| | - Chiara E Campi
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig University of Gießen, Heinrich-Buff Ring 17, D-35392, Gießen, Hessen 35392, Germany
| | - Benjamin Grimm-Lebsanft
- Center For Free Electron Laser Science, University of Hamburg, Institut für Nanostruktur und Festkörperphysik, Gebäude 99, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Sören Buchenau
- Center For Free Electron Laser Science, University of Hamburg, Institut für Nanostruktur und Festkörperphysik, Gebäude 99, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Michael A Rübhausen
- Center For Free Electron Laser Science, University of Hamburg, Institut für Nanostruktur und Festkörperphysik, Gebäude 99, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Simon Harrisson
- Laboratoire de Chimie des Polymères Organiques, University of Bordeaux/ENSCBP/CNRS UMR5629, Pessac 33600, France
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Siegfried Schindler
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig University of Gießen, Heinrich-Buff Ring 17, D-35392, Gießen, Hessen 35392, Germany
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| |
Collapse
|
7
|
Parkatzidis K, de Haro Amez L, Truong NP, Anastasaki A. Cu(0)-RDRP of acrylates using an alkyl iodide initiator. Polym Chem 2023. [DOI: 10.1039/d2py01563c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
In the vast majority of atom transfer radical polymerizations, alkyl bromides or alkyl chlorides are commonly employed as initiators. Herein, alkyl iodides are demonstrated as ATRP initiators.
Collapse
Affiliation(s)
- Kostas Parkatzidis
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Leonardo de Haro Amez
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Nghia P. Truong
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Athina Anastasaki
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
8
|
Yuan B, Huang T, Lv X, Jiang L, Sun X, Zhang Y, Tang J. Bioenhanced Rapid Redox Initiation for RAFT Polymerization in the Air. Macromol Rapid Commun 2022; 43:e2200218. [PMID: 35751146 DOI: 10.1002/marc.202200218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/18/2022] [Indexed: 12/17/2022]
Abstract
A well-controlled bioenhanced reversible addition-fragmentation chain transfer (RAFT) in the presence of air is carried out by using glucose oxidase (GOx), glucose, ascorbic acid (Asc acid), and ppm level of hemin. The catalytic concentration of hemin is employed to enhance hydrogen peroxide (H2 O2 )/Asc acid redox initiation, achieving rapid RAFT polymerization. Narrow molecular weight distributions and high monomer conversion (Ð as low as 1.09 at >95% conversion) are achieved within tens of minutes. Several kinds of monomers are used to verify the universal implication of the presented method. The influences of the pH and feed ratio of each component on the polymerization rate are assessed. Besides, a polymerization rate regulation is realized by managing Asc acid addition. This work significantly increases the rate of redox-initiated GOx-deoxygen RAFT polymerization by using simple and green reactants, facilitating the application of RAFT polymerization in areas such as biomedical applications.
Collapse
Affiliation(s)
- Bolei Yuan
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Tingting Huang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaoxiao Lv
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lin Jiang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xueying Sun
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yunhe Zhang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China.,Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, China
| | - Jun Tang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
9
|
Zhang J, Duan J, Chen D, Ma Y, Yang W. Direct Photolysis RAFT Polymerization of (Metha)acrylate with 2‐Cyano‐2‐propyldodecyl Trithiocarbonate as Mediator. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jianxiong Zhang
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Junjin Duan
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Dong Chen
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers Beijing University of Chemical Technology Beijing 100029 China
| | - Yuhong Ma
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers Beijing University of Chemical Technology Beijing 100029 China
| | - Wantai Yang
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
10
|
Playing construction with the monomer toy box for the synthesis of multi‐stimuli responsive copolymers by reversible deactivation radical polymerization protocols. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Borsari M, Braidi N, Buffagni M, Ghelfi F, Parenti F, Porcelli N, Serafini G, Isse AA, Bonifaci L, Cavalca G, Longo A, Morandini I, Pettenuzzo N. Copper-catalyzed ARGET ATRP of styrene from ethyl α-haloisobutyrate in EtOAc/EtOH, using ascorbic acid/Na2CO3 as reducing system. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Gong HH, Zhang Y, Cheng YP, Lei MX, Zhang ZC. The Application of Controlled/Living Radical Polymerization in Modification of PVDF-based Fluoropolymer. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2616-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Rolland M, Lohmann V, Whitfield R, Truong NP, Anastasaki A. Understanding dispersity control in
photo‐
atom transfer radical polymerization: Effect of degree of polymerization and kinetic evaluation. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Manon Rolland
- Laboratory of Polymeric Materials, Department of Materials ETH Zürich Zürich Switzerland
| | - Victoria Lohmann
- Laboratory of Polymeric Materials, Department of Materials ETH Zürich Zürich Switzerland
| | - Richard Whitfield
- Laboratory of Polymeric Materials, Department of Materials ETH Zürich Zürich Switzerland
| | - Nghia P. Truong
- Laboratory of Polymeric Materials, Department of Materials ETH Zürich Zürich Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials ETH Zürich Zürich Switzerland
| |
Collapse
|
14
|
Yin R, Wang Z, Bockstaller MR, Matyjaszewski K. Tuning dispersity of linear polymers and polymeric brushes grown from nanoparticles by atom transfer radical polymerization. Polym Chem 2021. [DOI: 10.1039/d1py01178b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Molecular weight distribution imposes considerable influence on the properties of polymers, making it an important parameter, impacting morphology and structural behavior of polymeric materials.
Collapse
Affiliation(s)
- Rongguan Yin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Michael R. Bockstaller
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|