1
|
Thoma JL, Little H, Duhamel J. Location of a Hydrophobic Load in Poly(oligo(ethylene glycol) methyl ether methacrylate)s (PEGMAs) Dissolved in Water and Probed by Fluorescence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5900-5912. [PMID: 38442036 DOI: 10.1021/acs.langmuir.3c03802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Two series of pyrene-labeled poly(oligo(ethylene glycol) methyl ether methacrylate)s referred to as PyEG5-PEGnMA and PyC4-PEGnMA were prepared to probe the region surrounding the polymethacrylate backbone by using the fluorescence of the dye pyrene. PyEG5-PEGnMA and PyC4-PEGnMA were prepared by copolymerizing the EGnMA methacrylate monomers with penta(ethylene glycol) 1-pyrenemethyl ether methacrylate or 1-pyrenebutyl methacrylate, respectively. In organic solvents, the much longer 18 non-hydrogen atom linker connecting the pyrene moieties to the polymethacrylate backbone in the PyEG5-PEGnMA samples enabled the deployment of the pyrenyl labels into the solution. In water, however, an excited pyrene for PyEG5-PEGnMA was found to probe a same volume as for the PyC4-PEGnMA samples where a much shorter 6 non-hydrogen atom spacer connected pyrene to the backbone. Another surprising observation, considering that the hydrophobicity of pyrene induces strong pyrene aggregation for many pyrene-labeled water-soluble polymers (Py-WSPs) in water, was the little pyrene aggregation found for the PyEG5-PEGnMA and PyC4-PEGnMA samples in water. These effects could be related to the organic-like domain (OLD) generated by the oligo(ethylene glycol) side chains densely arranged around the polymethacrylate backbone of the polymeric bottlebrush (PBB). Additional fluorescence experiments conducted with the penta(ethylene glycol) 1-pyrenemethyl ether derivative indicated that the cylindrical OLD surrounding the polymethacrylate backbone had a chemical composition similar to that of ethylene glycol. Binding of hydrophobic pyrene molecules to unlabeled PEGnMA bottlebrushes in water further supported the existence of the OLD. The demonstration, that PEGnMA samples form an OLD in water, which can host and protect hydrophobic cargoes like pyrene, should lead to the development of improved PEGnMA-based drug delivery systems.
Collapse
Affiliation(s)
- Janine L Thoma
- Department of Chemistry, Institute for Polymer Research, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Hunter Little
- Department of Chemistry, Institute for Polymer Research, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Jean Duhamel
- Department of Chemistry, Institute for Polymer Research, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
2
|
Casier R, Duhamel J. Appraisal of blob-Based Approaches in the Prediction of Protein Folding Times. J Phys Chem B 2023; 127:8852-8859. [PMID: 37793094 DOI: 10.1021/acs.jpcb.3c04958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
A series of reports published in the last 3 years has illustrated that a blob-based model (BBM) can predict the folding time of proteins from their primary amino acid (aa) sequence based on three simple rules established to characterize the long-range backbone dynamics (LRBD) of racemic polypeptides. The sole use of LRBD to predict protein folding times with the BBM represents a radical departure from all other prediction methods currently applied to determine protein folding times, which rely instead on parameters such as the structure content, folding kinetics, chain length, amino acid properties, or contact topography of proteins. Furthermore, the built-in modularity of the BBM enables the parametrization and inclusion of new phenomena affecting the LRBD of polypeptides, while its conceptual simplicity makes it an interesting new mathematical tool for studying protein folding. However, its novelty implies that its relationship with many other methods used to predict protein folding times has not been well researched. Consequently, the purpose of this report is to uncover the physical phenomena encountered during protein folding that are best described by the BBM through the identification of parameters that have been recognized over the years as being strong predictors for protein folding, such as protein size, topology, structural class, and folding kinetics. This was accomplished by determining the parameters most strongly correlated with the folding times predicted by the BBM. While the BBM in its present form appears to be a good indicator of the folding times of the vast majority of the 195 proteins considered so far, this report finds that it excels for moderately large proteins that are primarily composed of locally formed structural motifs such as α-helices or for proteins that fold in multiple steps. Altogether, these observations based on the use of the BBM support the notion that proteins fold the way they do because the LRBD of polypeptides is mostly driven by the local interactions experienced between aa's within reach of one another.
Collapse
Affiliation(s)
- Remi Casier
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Jean Duhamel
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| |
Collapse
|
3
|
Casier R, Duhamel J. Synergetic Effects of Alanine and Glycine in Blob-Based Methods for Predicting Protein Folding Times. J Phys Chem B 2023; 127:1325-1337. [PMID: 36749707 DOI: 10.1021/acs.jpcb.2c08155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The polypeptide PGlyAlaGlu was prepared with 20 mol % glycine (Gly), 36 mol % d,l-alanine (Ala), and 44 mol % d,l-glutamic acid (Glu) and labeled with the dye 1-pyrenemethylamine to yield a series of Py-PGlyAlaGlu samples. The fluorescence decays of the Py-PGlyAlaGlu samples were analyzed according to the fluorescence blob model (FBM) to obtain the number Nblobexp of amino acids (aa's) encompassed inside the subvolume Vblob of the polypeptide probed by an excited pyrene. An Nblobexp value of 29 (±2) was retrieved for Py-PGlyAlaGlu, which was much larger than for any of the copolypeptide PGlyGlu or PAlaGlu prepared with either Gly and Glu or Ala and Glu, respectively. The continuous increase in Nblobexp with decreasing side chain size (SCS) from 10 aa's for PGlu to 16 aa's for PAlaGlu and 22 aa's for PGlyGlu was used earlier to define the reach of an aa and determine the groups of aa's that could interact with each other along a polypeptide backbone according to their SCS. These groups of aa's, referred to as blobs, led to the implementation of blob-based models (BBM) to predict the folding time τFtheo,BBM of 145 proteins, which was found to match their experimental folding time τFexp with a relatively high 0.71 correlation coefficient. Nevertheless, the much higher Nblobexp value found for Py-PGlyAlaGlu compared to all other pyrene-labeled polypeptides studied to date indicates that the reach of aa's along a polypeptide sequence is affected not only by SCS but also by synergetic effects between different aa's. Following this new insight, a revised BBM was implemented to predict τFtheo,BBM for 195 proteins assuming the existence or absence of synergies to control the interactions between aa's along a polypeptide sequence. Similarly good correlation coefficients of 0.71 and 0.74 were obtained for a direct 1:1 comparison of τFexp and τFtheo,BBM for the 195 proteins without and with synergies, respectively. This result suggests that synergetic effects between different aa's have little effect on τFtheo,BBM predicted from BBM underlying the robustness of this methodology.
Collapse
Affiliation(s)
- Remi Casier
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Jean Duhamel
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
4
|
Casier R, Duhamel J. Pyrene Excimer Formation (PEF) and Its Application to the Study of Polypeptide Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3623-3629. [PMID: 35291766 DOI: 10.1021/acs.langmuir.2c00129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This Perspective describes how the fluorescence blob model (FBM) has been developed and applied over the past 30 years to characterize the long-range backbone dynamics (LRBD) of polymers in solution. In these experiments, the polymers are randomly labeled with the dye pyrene, which forms an excimer upon the encounter between an excited and a ground-state pyrenyl label inside a finite subvolume of the polymer coil referred to as a blob representing the volume probed by the excited pyrene. By compartmentalizing the polymer coil into a cluster of identical blobs, FBM analysis of the fluorescence decays acquired with the polymers yields the number Nblob of structural units inside a blob. Since a flexible or rigid backbone will result in an Nblob that is either large or small, Nblob can be used as a measure of the flexibility of a given polymer. After having established that these experiments based on pyrene excimer formation (PEF) yielded quantitative information about the LRBD of a variety of polymers in solution, control experiments were carried out to characterize the effects that different molecular variables, such as the side-chain size (SCS) of a structural unit or the length of the linker connecting pyrene to the polymeric backbone, had on the parameters retrieved with the FBM. At this point, the FBM was applied to study the LRBD of polypeptides prepared from racemic mixtures of amino acids (aa's). These studies led to the establishment of simple rules that could be developed into mathematical equations to describe the LRBD of polypeptides. The Nblob values retrieved from the FBM analysis of the fluorescence decays acquired with the pyrene-labeled polypeptides could then be employed to predict the total conformational search time (τtcs) of any polypeptide based on their sequence. Strong correlations were found between the predicted τtcs and the experimental folding times of 145 proteins. The good quality of these correlations suggests that the blob-based approach described in this report might represent an interesting mathematical means for studying protein folding.
Collapse
Affiliation(s)
- Remi Casier
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jean Duhamel
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
5
|
Thoma JL, Duhamel J. Characterization of the Local Volume Probed by the Side-Chain Ends of Poly(oligo(ethylene glycol) 1-Pyrenemethyl ether methacrylate) Bottle Brushes in Solution Using Pyrene Excimer Fluorescence. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Janine L. Thoma
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jean Duhamel
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
6
|
Casier R, Duhamel J. Effects of Glycine on the Local Conformation and Internal Backbone Dynamics of Polypeptides. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Remi Casier
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Jean Duhamel
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| |
Collapse
|
7
|
Yuan W, Casier R, Duhamel J. Unfolding of Helical Poly( L-Glutamic Acid) in N, N-Dimethylformamide Probed by Pyrene Excimer Fluorescence (PEF). Polymers (Basel) 2021; 13:polym13111690. [PMID: 34067276 PMCID: PMC8196828 DOI: 10.3390/polym13111690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
The denaturation undergone by α–helical poly(L-glutamic acid) (PLGA) in N,N-dimethylformamide upon addition of guanidine hydrochloride (GdHCl) was characterized by comparing the fluorescence of a series of PLGA constructs randomly labeled with the dye pyrene (Py-PLGA) to that of a series of Py-PDLGA samples prepared from a racemic mixture of D,L-glutamic acid. The process of pyrene excimer formation (PEF) was taken advantage of to probe changes in the conformation of α–helical Py-PLGA. Fluorescence Blob Model (FBM) analysis of the fluorescence decays of the Py-PLGA and Py-PDLGA constructs yielded the average number (<Nblob>) of glutamic acids located inside a blob, which represented the volume probed by an excited pyrenyl label. <Nblob> remained constant for randomly coiled Py-PDLGA but decreased from ~20 to ~10 glutamic acids for the Py-PLGA samples as GdHCl was added to the solution. The decrease in <Nblob> reflected the decrease in the local density of PLGA as the α–helix unraveled in solution. The changes in <Nblob> with GdHCl concentration was used to determine the change in Gibbs energy required to denature the PLGA α–helix in DMF. The relationship between <Nblob> and the local density of macromolecules can now be applied to characterize the conformation of macromolecules in solution.
Collapse
Affiliation(s)
| | | | - Jean Duhamel
- Correspondence: ; Tel.: +1-519-888-4567 (ext. 35916)
| |
Collapse
|