1
|
Gamache MT, Gehring B, Hanan GS, Kurth DG. Spectro-electrochemical study of iron and ruthenium bis-terpyridine complexes with methyl viologen-like subunits as models for supramolecular polymers. Dalton Trans 2024; 53:13151-13159. [PMID: 39041831 DOI: 10.1039/d4dt00974f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Metallo-supramolecular polyelectrolytes (MEPE) have a variety of attractive properties concerning electrochromism, spin-crossover, rheology, and cell differentiation. Previous studies suggest that these polynuclear structures can be regarded as an assembly of individual subunits and mononuclear complexes can act as models. In this study, we synthesize a monotopic and a ditopic terpyridine ligand with pyridinium units as well as the corresponding iron and ruthenium MEPEs and their mononuclear counterparts. UV-vis studies show that the mononuclear complexes have similar absorption properties to MEPEs. Furthermore, all complexes and MEPEs exhibit electrochromic behavior. Yet only the MEPEs can be deposited on different substrates using a layer-by-layer approach which makes them attractive for applications as electrochromic devices. However, the low solubility particularly of the ruthenium MEPE, renders characterization in solution impractical. Hence, the use of mononuclear complexes with similar monotopic ligands as presented herein can act as a first instance to evaluate the properties of corresponding MEPEs, facilitating the development of metallo-supramolecular materials.
Collapse
Affiliation(s)
- Mira T Gamache
- Chemische Technologie der Materialsynthese, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany.
- Département de Chimie, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V-03B, Canada
| | - Benjamin Gehring
- Chemische Technologie der Materialsynthese, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany.
| | - Garry S Hanan
- Département de Chimie, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V-03B, Canada
| | - Dirk G Kurth
- Chemische Technologie der Materialsynthese, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany.
| |
Collapse
|
2
|
Chen C, Pang X, Li Y, Yu X. Dual Lewis Acid- and Base-Responsive Terpyridine-Based Hydrogel: Programmable and Spatiotemporal Regulation of Fluorescence for Chemical-Based Information Security. Inorg Chem 2023; 62:2105-2115. [PMID: 36705439 DOI: 10.1021/acs.inorgchem.2c03738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A huge amount of data inundated in our daily life; there is an ever-increasing need to develop a new strategy of information encryption-decryption-erasing. Herein, a polymeric DCTpy/PAM hydrogel has been fabricated to store information via controllable Eu3+/Zn2+ ionoprinting for hierarchical and multidimensional information decryption. Eu3+ and Zn2+ have a competition and dynamic interaction toward DCTpy under NH3 stimuli in the polymeric DCTpy/PAM hydrogel network. The Eu(III)/Zn(II)@DCTpy/PAM hydrogel exhibits light red fluorescence of Eu3+ due to the antenna effect. Upon the addition of NH3, dissociation of the Eu3+-DCTpy complex takes place, and the Zn(II)/DCTpy/NH3 complex is formed with both ICT (intramolecular charge-transfer) and PET (photo-induced electron-transfer) process characteristics that exhibits yellow emission color. Subsequently, HCl can quench the fluorescence of the resulting hydrogel. By integrating transparency, adhesiveness, and programmable stimuli responsiveness of the hydrogel blocks in to one system, complex, multistage, and time-controlled information storage-encryption-decryption-erasing in sequence with multidimensions is illustrated via the molecule diffusion method. This work provides a novel and representative strategy in fabricating information encryption-decryption-erasing materials with high capacity and complexity by a simple terpyridine-based hydrogel.
Collapse
Affiliation(s)
- Chun Chen
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, And College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| | - Xuelei Pang
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, And College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| | - Yajuan Li
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, And College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| | - Xudong Yu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, And College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China
| |
Collapse
|
3
|
Remarkably flexible 2,2′:6′,2″-terpyridines and their group 8–10 transition metal complexes – Chemistry and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Koziol MF, Nguyen PL, Gallo S, Olsen BD, Seiffert S. Hierarchy of relaxation times in supramolecular polymer model networks. Phys Chem Chem Phys 2022; 24:4859-4870. [PMID: 35136895 DOI: 10.1039/d1cp04213k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular polymer gels are an evolving class of soft materials with a vast number of properties that can be tuned to desired applications. Despite continuous advances concerning polymer synthesis, sustainability or adaptability, a consistent understanding of the interplay between structure, dynamics, and diffusion processes within transient networks is lacking. In this study, the hierarchy of several relaxation processes is investigated, starting from a microscopic perspective of a single sticker dissociation event up to the center-of-mass diffusion of a star-shaped polymer building block on different length scales, as well as the resulting macroscopic mechanical response to applied external stress. In addition to that, a second focus is placed on the gel micro-structure that is analyzed by light scattering. Conversion of the dynamic light scattering (DLS) inverse length scale into real space allows for a combination of relaxation times with those obtained by forced Rayleigh scattering (FRS). For these investigations, a model-type metallo-supramolecular network consisting of narrowly dispersed tetra-arm poly(ethylene glycol)-terpyridine macromolecules that are interconnected via complexation with zinc ions is chosen. Assembling the obtained activation energies reveals that all complex dissociation-governed relaxation processes exhibit similar activation energies.
Collapse
Affiliation(s)
- Martha Franziska Koziol
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Phuong Loan Nguyen
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Shannon Gallo
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| |
Collapse
|
5
|
Stach OS, Breul K, Berač CM, Urschbach M, Seiffert S, Besenius P. Bridging Rigidity and Flexibility: Modulation of Supramolecular Hydrogels by Metal Complexation. Macromol Rapid Commun 2021; 43:e2100473. [PMID: 34505725 DOI: 10.1002/marc.202100473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/03/2021] [Indexed: 11/11/2022]
Abstract
The combination of complementary, noncovalent interactions is a key principle for the design of multistimuli responsive hydrogels. In this work, an amphiphilic peptide, supramacromolecular hydrogelator which combines metal-ligand coordination induced gelation and thermoresponsive toughening is reported. Following a modular approach, the incorporation of the triphenylalanine sequence FFF into a structural (C3 EG ) and a terpyridine-functionalized (C3 Tpy ) C3 -symmetric monomer enables their statistical copolymerization into self-assembled, 1D nanorods in water, as investigated by circular dichroism (CD) spectroscopy and transmission electron microscopy (TEM). In the presence of a terpyridine functionalized telechelic polyethylene glycol (PEG) cross-linker, complex formation upon addition of different transition metal ions (Fe2+ , Zn2+ , Ni2+ ) induces the formation of soft, reversible hydrogels at a solid weight content of 1 wt% as observed by linear shear rheology. The viscoelastic behavior of Fe2+ and Zn2+ cross-linked hydrogels are basically identical, while the most kinetically inert Ni2+ coordinative bond leads to significantly weaker hydrogels, suggesting that the most dynamic rather than the most thermodynamically stable interaction supports the formation of robust and responsive hydrogel materials.
Collapse
Affiliation(s)
- Oliver S Stach
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Katharina Breul
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany.,Graduate School of Materials Science in Mainz, Staudingerweg 9, Mainz, 55128, Germany
| | - Christian M Berač
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany.,Graduate School of Materials Science in Mainz, Staudingerweg 9, Mainz, 55128, Germany
| | - Moritz Urschbach
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany.,Graduate School of Materials Science in Mainz, Staudingerweg 9, Mainz, 55128, Germany
| | - Pol Besenius
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, Mainz, 55128, Germany.,Graduate School of Materials Science in Mainz, Staudingerweg 9, Mainz, 55128, Germany
| |
Collapse
|
6
|
Yu CH, Chiang PY, Yeh YC. Di(2-picolyl)amine-functionalized poly(ethylene glycol) hydrogels with tailorable metal–ligand coordination crosslinking. Polym Chem 2021. [DOI: 10.1039/d1py01325d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of metallo-hydrogels has been developed using di(2-picolyl)amine (DPA)-functionalized 4-arm polyethylene glycol (4A-PEG-DPAn) polymers crosslinked by metal–ligand coordination.
Collapse
Affiliation(s)
- Cheng-Hsuan Yu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Pei-Yu Chiang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|