1
|
Zhang H, Zoubi AZ, Silberstein MN, Diesendruck CE. Mechanochemistry in Block Copolymers: New Scission Site due to Dynamic Phase Separation. Angew Chem Int Ed Engl 2023; 62:e202314781. [PMID: 37962518 DOI: 10.1002/anie.202314781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/15/2023]
Abstract
Mechanochemistry can lead to the degradation of the properties of covalent macromolecules. In recent years, numerous functional materials have been developed based on block copolymers (BCPs), however, like homopolymers, their chains could undergo mechanochemical damage during processing, which could have crucial impact on their performance. To investigate the mechanochemical response of BCPs, multiple polymers comprising different ratios of butyl acrylate and methyl methacrylate were prepared with similar degree of polymerization and stressed in solution via ultrasonication. Interestingly, all BCPs, regardless of the amount of the methacrylate monomer, presented a mechanochemistry rate constant similar to that of the methacrylate homopolymer, while a random copolymer reacted like the acrylate homopolymer. Size-exclusion chromatography showed that, in addition to the typical main peak shift towards higher retention times, a different daughter fragment was produced indicating a secondary selective scission site, situated around the covalent connection between the two blocks. Molecular dynamics modeling using acrylate and methacrylate oligomers were carried out and indicated that dynamic phase separation occurs even in a good solvent. Such non-random conformations can explain the faster polymer mechanochemistry. Moreover, the dynamic model for end-to-end chain overstretching supports bond scission which is not necessarily chain-centered.
Collapse
Affiliation(s)
- Hang Zhang
- Schulich Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Haifa, 3200008, Israel
| | - Alan Z Zoubi
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Meredith N Silberstein
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Charles E Diesendruck
- Schulich Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Haifa, 3200008, Israel
| |
Collapse
|
2
|
Noh J, Koo MB, Jung J, Peterson GI, Kim KT, Choi TL. Monodisperse Cyclic Polymer Mechanochemistry: Scission Kinetics and the Dynamic Memory Effect with Ultrasonication and Ball-Mill Grinding. J Am Chem Soc 2023; 145:18432-18438. [PMID: 37486970 DOI: 10.1021/jacs.3c04733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
A series of monodisperse cyclic and linear poly(d,l-lactide)s (c-PLA and l-PLA, respectively) were prepared with various degrees of polymerization (DP) using an iterative convergent synthesis approach. The absence of a molecular weight distribution provided us a chance to study their mechanochemical reactivity without obstructions arising from the size distribution. Additionally, we prepared l- and c-PLAs with identical DPs, which enabled us to attribute differences in scission rates to the cyclic polymer architecture alone. The polymers were subjected to ultrasonication (US) and ball-mill grinding (BMG), and their degradation kinetics were explored. Up to 9.0 times larger scission rates were observed for l-PLA (compared to c-PLA) with US, but the difference was less than 1.9 times with BMG. Fragmentation requires two backbone scission events for c-PLA, and we were able to observe linear intermediates (formed after a single scission) for the first time. We also developed a new method of studying the dynamic memory effect in US by characterizing and comparing the daughter fragment molecular weight distributions of l- and c-PLAs. These results provide new insights into the influence of the cyclic polymer architecture on mechanochemical reactions as well as differences in reactivity observed with US and BMG.
Collapse
Affiliation(s)
- Jinkyung Noh
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Mo Beom Koo
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jisoo Jung
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Gregory I Peterson
- Department of Chemistry and Research Institute of Basic Science, Incheon National University, Incheon 22012, Republic of Korea
| | - Kyoung Taek Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae-Lim Choi
- Department of Materials, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
3
|
Zhang H, Diesendruck CE. Off-center Mechanophore Activation in Block Copolymers. Angew Chem Int Ed Engl 2023; 62:e202213980. [PMID: 36394518 PMCID: PMC10108114 DOI: 10.1002/anie.202213980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 11/18/2022]
Abstract
Block copolymers (BCPs) are used in numerous applications in modern materials science. Yet, like homopolymers, BCPs can undergo covalent bond scission when mechanically stressed (mechanochemistry), which could lead to unexpected consequences in such applications. BCPs' heterogeneity may affect force transduction, perhaps changing force distribution and localization. To verify this, a gem-dichlorocyclopropane (gDCC) embedded linear chain is prepared and extended with a poly(methyl methacrylate) block. When stressed in solution, the mechanochemical ring-opening of gDCC is accelerated compared to homopolymers, even though the mechanophores are at the chain ends. Moreover, a higher mechanophore activation selectivity is obtained. These results indicate that mechanochemical response outside, and even far from the chain center is quite prominent in BCPs, and that forces along the polymer chain can efficiently activate multi-mechanophores regions, even when far from the polymer midchain.
Collapse
Affiliation(s)
- Hang Zhang
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyHaifa3200008Israel
| | - Charles E. Diesendruck
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyHaifa3200008Israel
| |
Collapse
|
4
|
Cheng J, Yu Q, Tu K, Wang J, Zhang L, Cheng Z. Hierarchical Self-Assembly of Triphilic Main-Chain-Type Semifluorinated Alternating Graft Copolymers in Aqueous Solution. Macromol Rapid Commun 2023; 44:e2200570. [PMID: 36104160 DOI: 10.1002/marc.202200570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Indexed: 01/26/2023]
Abstract
Fluorinated copolymers can self-assemble in solution and form micelles with rare properties due to the peculiar behavior of fluorinated groups. However, the process description of the self-assembly is still largely phenomenological and difficult to explain due to the tendency of the fluorinated segments to segregate from both the hydrophilic and lipophilic segments, which can result in various morphologies. Herein, the controlled formation of ellipsoidal micelles, disklike micelles, and sheets by hierarchical self-assembly of triphilic main-chain-type semifluorinated alternating graft copolymers (AB)n A-g-mOEG is presented (where A represents unit of α,ω-diiodoperfluoroalkane, B represents the unit of α,ω-unconjugated diene, and mOEG represents methoxy oligo(ethylene glycol)), which are synthesized by step transfer-addition and radical-termination (START) polymerization and azide-alkyne click chemistry. Furthermore, the possible self-assembly mechanism of these micron-level aggregates is proposed, which is ascribed to the hierarchical self-assembly, crowding effect of hydrophilic chains and the interfacial tension between the fluoroalkane and alkane segments. This study can provide a facile and highly efficient approach to the synthesis of main-chain-type fluorinated graft copolymers and expand the research field for the solution self-assembly of fluorinated copolymers.
Collapse
Affiliation(s)
- Jiannan Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qing Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Kai Tu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jinying Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
5
|
Bichler KJ, Jakobi B, Honecker D, Stingaciu LR, Weldeghiorghis TK, Collins JHP, Schneider GJ. Dynamics of Bottlebrush Polymers in Solution by Neutron Spin Echo Spectroscopy. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Karin J. Bichler
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana70803, United States
| | - Bruno Jakobi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana70803, United States
| | - Dirk Honecker
- ISIS Facility, Rutherford Appleton Laboratory, DidcotOX11 0QX, United Kingdom
| | - Laura R. Stingaciu
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | | | - James H. P. Collins
- National High Magnetic Field Laboratory and Biology and McKnight Brain Institute, University of Florida, Box 100015, Gainesville, Florida32610-0015, United States
| | - Gerald J. Schneider
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana70803, United States
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana70803, United States
| |
Collapse
|
6
|
Zou M, Zhao P, Huo S, Göstl R, Herrmann A. Activation of Antibiotic-Grafted Polymer Brushes by Ultrasound. ACS Macro Lett 2022; 11:15-19. [PMID: 35574800 DOI: 10.1021/acsmacrolett.1c00645] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ultrasound-mediated activation of drugs from macromolecular architectures using the principles of polymer mechanochemistry (sonopharmacology) is a promising strategy to gain spatiotemporal control over drug activity. Yet, conceptual challenges limit the applicability of this method. Especially low drug-loading content and low mechanochemical efficiency require the use of high carrier mass concentrations and prolonged exposure to ultrasound. Moreover, the activated drug is generally shielded by the hydrodynamic coil of the attached polymer fragment leading to a decreased drug potency. Here we present a carrier design for the ultrasound-induced activation of vancomycin, which is deactivated with its H-bond-complementary peptide target sequence. We show that the progression from mechanophore-centered linear chains to mechanophore-decorated polymer brushes increases drug-loading content, mechanochemical efficiency, and drug potency. These results may serve as a design guideline for future endeavors in the field of sonopharmacology.
Collapse
Affiliation(s)
- Miancheng Zou
- DWI − Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Pengkun Zhao
- DWI − Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Shuaidong Huo
- DWI − Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Robert Göstl
- DWI − Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Andreas Herrmann
- DWI − Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
7
|
Nijem S, Song Y, Schwarz R, Diesendruck CE. Flex-activated CO mechanochemical production for mechanical damage detection. Polym Chem 2022. [DOI: 10.1039/d2py00503d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New flex-activated mechanophore allows for mechanical damage in polymers using a simple household CO detectors, in addition to the formation of an extended and fluorescent π system.
Collapse
Affiliation(s)
- Sally Nijem
- Schulich Faculty of Chemistry and Grand Technion Energy Program, Technion – Israel Institute of Technology, 320003, Haifa, Israel
| | - Ying Song
- Schulich Faculty of Chemistry and Grand Technion Energy Program, Technion – Israel Institute of Technology, 320003, Haifa, Israel
- Department of Chemistry, Nanning Normal University, 530001, Nanning, Guangxi, China
| | - Rony Schwarz
- Schulich Faculty of Chemistry and Grand Technion Energy Program, Technion – Israel Institute of Technology, 320003, Haifa, Israel
| | - Charles E. Diesendruck
- Schulich Faculty of Chemistry and Grand Technion Energy Program, Technion – Israel Institute of Technology, 320003, Haifa, Israel
| |
Collapse
|
8
|
Noh J, Peterson GI, Choi T. Mechanochemical Reactivity of Bottlebrush and Dendronized Polymers: Solid vs. Solution States. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jinkyung Noh
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Gregory I. Peterson
- Department of Chemistry Incheon National University 119 Academy-ro, Yeonsu-gu Incheon 22012 Republic of Korea
| | - Tae‐Lim Choi
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
9
|
Noh J, Peterson GI, Choi TL. Mechanochemical Reactivity of Bottlebrush and Dendronized Polymers: Solid vs. Solution States. Angew Chem Int Ed Engl 2021; 60:18651-18659. [PMID: 34101320 DOI: 10.1002/anie.202104447] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/22/2021] [Indexed: 12/23/2022]
Abstract
We explored the mechanochemical degradation of bottlebrush and dendronized polymers in solution (with ultrasonication, US) and solid states (with ball-mill grinding, BMG). Over 50 polymers were prepared with varying backbone length and arm architecture, composition, and size. With US, we found that bottlebrush and dendronized polymers exhibited consistent backbone scission behavior, which was related to their elongated conformations in solution. Considerably different behavior was observed with BMG, as arm architecture and composition had a significant impact on backbone scission rates. Arm scission was also observed for bottlebrush polymers in both solution and solid states, but only in the solid state for dendronized polymers. Motivated by these results, multi-mechanophore polymers with bottlebrush and dendronized polymer architectures were prepared and their reactivity was compared. Although dendronized polymers showed slower arm-scission, the selectivity for mechanophore activation was much higher. Overall, these results have important implications to the development of new mechanoresponsive materials.
Collapse
Affiliation(s)
- Jinkyung Noh
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gregory I Peterson
- Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
10
|
Peterson GI, Choi TL. The influence of polymer architecture in polymer mechanochemistry. Chem Commun (Camb) 2021; 57:6465-6474. [PMID: 34132272 DOI: 10.1039/d1cc02501e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polymer architecture is an important factor in polymer mechanochemistry. In this Feature Article, we summarize recent developments in utilizing polymer architecture to modulate mechanochemical reactions within polymers, or more specifically, the location and rates of bond scission events that lead to polymer fragmentation or mechanophore activation. Various well-defined architectures have been explored, including those of cyclic, intramolecularly cross-linked, dendritic, star, bottlebrush, and dendronized polymers. We primarily focus on describing the enhancement or suppression of mechanochemical reactivity, with respect to analogous linear polymers, as well as differences in solution- and solid-state behavior.
Collapse
Affiliation(s)
- Gregory I Peterson
- Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| | | |
Collapse
|