1
|
Höfken T, Gasser U, Schneider S, Petrunin AV, Scotti A. Real and In Silico Microgels Show Comparable Bulk Moduli Below and Above the Volume Phase Transition. Macromol Rapid Commun 2024; 45:e2400043. [PMID: 38613338 DOI: 10.1002/marc.202400043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/02/2024] [Indexed: 04/14/2024]
Abstract
The compressibility of soft colloids influences their phase behavior and flow properties, especially in concentrated suspensions. Particle compressibility, which is proportional to the reciprocal of the bulk modulus K, is a key parameter for soft polymer-based particles that can be compressed in crowded environments. Here, microgels with different degrees of cross-linking, i.e., softness, are investigated below and above their volume phase transition temperature (VPTT). By combining molecular dynamics simulations with small-angle neutron scattering with contrast variation, a change in the particle bulk moduli of two orders of magnitude is observed. The degree of cross-linking has a significant impact on the bulk modulus of the swollen microgel, while above the VPTT the values of K are almost independent of the cross-linking density. The excellent agreement between experimental results and simulations also highlight that the model microgels from computer simulations possess both the internal architecture and the elastic properties of real polymeric networks. This paves the way to a systematic use of simulations to investigate the behavior of dense microgel suspensions below and above their VPTT.
Collapse
Affiliation(s)
- Tom Höfken
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Urs Gasser
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, Villigen, 5232, Switzerland
| | - Stefanie Schneider
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Alexander V Petrunin
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Andrea Scotti
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, SE-205 06, Sweden
- Biofilms-Research Center for Biointerfaces, Malmö University, Malmö, SE-205 06, Sweden
| |
Collapse
|
2
|
Lang W, Huang H, Yang L, Luo R, Wang Y, Xue B, Yang S. Polymer Complex Multilayers for Drug Delivery and Medical Devices. ACS APPLIED BIO MATERIALS 2023; 6:3555-3565. [PMID: 37589742 DOI: 10.1021/acsabm.3c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Polymer complex multilayers (PCMs) can be engineered into various structures with tunable properties via layer-by-layer (LBL) assembly driven by noncovalent forces. Due to their ease of preparation, capability of integrating multiple functional components, and excellent substrate compliance, biocompatible PCMs as coating materials or individual entities have attracted extensive attention in biomedical applications. This Spotlight on Applications presents recent progress on PCMs applied for drug delivery and medical devices. We provide several examples to address the importance of using PCM platforms to achieve controlled drug delivery including stimuli-triggered release, sustained release, and spatiotemporal sequential release. The effects of PCM coatings on the bioresponse regulation and performance enhancement of implantable devices are also highlighted. Moreover, the design and fabrication of flexible electrical and optical elements modified with LBL PCMs have been discussed, which demonstrates the great potential to advance emerging wearable devices for disease monitoring and health management.
Collapse
Affiliation(s)
- Wenyuan Lang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Hao Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Li Yang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Bing Xue
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Shuguang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
3
|
Kozlovskaya V, Dolmat M, Kharlampieva E. Two-Dimensional and Three-Dimensional Ultrathin Multilayer Hydrogels through Layer-by-Layer Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7867-7888. [PMID: 35686955 DOI: 10.1021/acs.langmuir.2c00630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stimuli-responsive multilayer hydrogels have opened new opportunities to design hierarchically organized networks with properties controlled at the nanoscale. These multilayer materials integrate structural, morphological, and compositional versatility provided by alternating layer-by-layer polymer deposition with the capability for dramatic and reversible changes in volumes upon environmental triggers, a characteristic of chemically cross-linked responsive networks. Despite their intriguing potential, there has been limited knowledge about the structure-property relationships of multilayer hydrogels, partly because of the challenges in regulating network structural organization and the limited set of the instrumental pool to resolve structure and properties at nanometer spatial resolution. This Feature Article highlights our recent studies on advancing assembly technologies, fundamentals, and applications of multilayer hydrogels. The fundamental relationships among synthetic strategies, chemical compositions, and hydrogel architectures are discussed, and their impacts on stimuli-induced volume changes, morphology, and mechanical responses are presented. We present an overview of our studies on thin multilayer hydrogel coatings, focusing on controlling and quantifying the degree of layer intermixing, which are crucial issues in the design of hydrogels with predictable properties. We also uncover the behavior of stratified "multicompartment" hydrogels in response to changes in pH and temperature. We summarize the mechanical responses of free-standing multilayer hydrogels, including planar thin coatings and films with closed geometries such as hollow microcapsules and nonhollow hydrogel microparticles with spherical and nonspherical shapes. Finally, we will showcase potential applications of pH- and temperature-sensitive multilayer hydrogels in sensing and drug delivery. The knowledge about multilayer hydrogels can advance the rational design of polymer networks with predictable and well-tunable properties, contributing to modern polymer science and broadening hydrogel applications.
Collapse
|
4
|
Houston JE, Fruhner L, de la Cotte A, Rojo González J, Petrunin AV, Gasser U, Schweins R, Allgaier J, Richtering W, Fernandez-Nieves A, Scotti A. Resolving the different bulk moduli within individual soft nanogels using small-angle neutron scattering. SCIENCE ADVANCES 2022; 8:eabn6129. [PMID: 35776796 PMCID: PMC10883365 DOI: 10.1126/sciadv.abn6129] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The bulk modulus, K, quantifies the elastic response of an object to an isotropic compression. For soft compressible colloids, knowing K is essential to accurately predict the suspension response to crowding. Most colloids have complex architectures characterized by different softness, which additionally depends on compression. Here, we determine the different values of K for the various morphological parts of individual nanogels and probe the changes of K with compression. Our method uses a partially deuterated polymer, which exerts the required isotropic stress, and small-angle neutron scattering with contrast matching to determine the form factor of the particles without any scattering contribution from the polymer. We show a clear difference in softness, compressibility, and evolution of K between the shell of the nanogel and the rest of the particle, depending on the amount of cross-linker used in their synthesis.
Collapse
Affiliation(s)
| | - Lisa Fruhner
- Forschungszentrum Jülich GmbH Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information Processing (IBI-8), 52425 Jülich, Germany
| | - Alexis de la Cotte
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
| | - Javier Rojo González
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
| | | | - Urs Gasser
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Ralf Schweins
- Institut Laue-Langevin ILL DS/LSS, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Jürgen Allgaier
- Forschungszentrum Jülich GmbH Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information Processing (IBI-8), 52425 Jülich, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
- JARA-SOFT, 52056 Aachen, Germany
| | - Alberto Fernandez-Nieves
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
- ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona, Spain
| | - Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
5
|
Scotti A, Schulte MF, Lopez CG, Crassous JJ, Bochenek S, Richtering W. How Softness Matters in Soft Nanogels and Nanogel Assemblies. Chem Rev 2022; 122:11675-11700. [PMID: 35671377 DOI: 10.1021/acs.chemrev.2c00035] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Softness plays a key role in determining the macroscopic properties of colloidal systems, from synthetic nanogels to biological macromolecules, from viruses to star polymers. However, we are missing a way to quantify what the term "softness" means in nanoscience. Having quantitative parameters is fundamental to compare different systems and understand what the consequences of softness on the macroscopic properties are. Here, we propose different quantities that can be measured using scattering methods and microscopy experiments. On the basis of these quantities, we review the recent literature on micro- and nanogels, i.e. cross-linked polymer networks swollen in water, a widely used model system for soft colloids. Applying our criteria, we address the question what makes a nanomaterial soft? We discuss and introduce general criteria to quantify the different definitions of softness for an individual compressible colloid. This is done in terms of the energetic cost associated with the deformation and the capability of the colloid to isotropically deswell. Then, concentrated solutions of soft colloids are considered. New definitions of softness and new parameters, which depend on the particle-to-particle interactions, are introduced in terms of faceting and interpenetration. The influence of the different synthetic routes on the softness of nanogels is discussed. Concentrated solutions of nanogels are considered and we review the recent results in the literature concerning the phase behavior and flow properties of nanogels both in three and two dimensions, in the light of the different parameters we defined. The aim of this review is to look at the results on micro- and nanogels in a more quantitative way that allow us to explain the reported properties in terms of differences in colloidal softness. Furthermore, this review can give researchers dealing with soft colloids quantitative methods to define unambiguously which softness matters in their compound.
Collapse
Affiliation(s)
- Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - M Friederike Schulte
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Carlos G Lopez
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Jérôme J Crassous
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Steffen Bochenek
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany, European Union
| |
Collapse
|