Akar I, Foster JC, Leng X, Pearce AK, Mathers RT, O’Reilly RK. Log
Poct/SA Predicts the Thermoresponsive Behavior of P(DMA-
co-RA) Statistical Copolymers.
ACS Macro Lett 2022;
11:498-503. [PMID:
35575334 PMCID:
PMC9022432 DOI:
10.1021/acsmacrolett.1c00776]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022]
Abstract
![]()
Polymers that exhibit
a lower critical solution temperature (LCST)
have been of great interest for various biological applications such
as drug or gene delivery, controlled release systems, and biosensing.
Tuning the LCST behavior through control over polymer composition
(e.g., upon copolymerization of monomers with different hydrophobicity)
is a widely used method, as the phase transition is greatly affected
by the hydrophilic/hydrophobic balance of the copolymers. However,
the lack of a general method that relates copolymer hydrophobicity
to their temperature response leads to exhaustive experiments when
seeking to obtain polymers with desired properties. This is particularly
challenging when the target copolymers are comprised of monomers that
individually form nonresponsive homopolymers, that is, only when copolymerized
do they display thermoresponsive behavior. In this study, we sought
to develop a predictive relationship between polymer hydrophobicity
and cloud point temperature (TCP). A series
of statistical copolymers were synthesized based on hydrophilic N,N-dimethyl acrylamide (DMA) and hydrophobic
alkyl acrylate monomers, and their hydrophobicity was compared using
surface area-normalized octanol/water partition coefficients (Log Poct/SA). Interestingly, a correlation between
the Log Poct/SA of the copolymers and
their TCPs was observed for the P(DMA-co-RA) copolymers, which allowed TCP prediction of a demonstrative copolymer P(DMA-co-MMA). These results highlight the strong potential of this computational
tool to improve the rational design of copolymers with desired temperature
responses prior to synthesis.
Collapse