1
|
Hertel R, Raisch M, Walter M, Reiter G, Sommer M. Mechanistically Different Mechanochromophores Enable Calibration and Validation of Molecular Forces in Glassy Polymers and Elastomeric Networks. Angew Chem Int Ed Engl 2024; 63:e202409369. [PMID: 39136230 PMCID: PMC11586691 DOI: 10.1002/anie.202409369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Indexed: 10/18/2024]
Abstract
Sterically distorted donor-acceptor π-systems, termed DA springs, can be progressively planarized under mechanical load causing a bathochromic shift of the photoluminescence (PL) spectrum. By combining theory and experiment, we here use a simple linear force calibration for two different conformational mechanochromophores to determine molecular forces in polymers from the mechanochromic shift in PL wavelength during multiple uniaxial tensile tests. Two systems are used, i) a highly entangled linear glassy polyphenylene and ii) a covalent elastomeric polydimethylsiloxane network. The mean forces estimated by this method are validated using known threshold forces for the mechanochemical ring-opening reactions of two different spiropyran force probes. The agreement between both approaches underlines that these DA springs provide the unique opportunity for the online monitoring of local molecular forces present in diverse polymer matrices.
Collapse
Affiliation(s)
- Raphael Hertel
- Department of Polymer ChemistryInstitute for ChemistryChemnitz University of TechnologyStr. der Nationen 6209111ChemnitzGermany
| | - Maximilian Raisch
- Department of Polymer ChemistryInstitute for ChemistryChemnitz University of TechnologyStr. der Nationen 6209111ChemnitzGermany
| | - Michael Walter
- FIT Freiburg Center for Interactive Materials and Bioinspired TechnologiesAlbert-Ludwig-University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| | - Günter Reiter
- Institute of PhysicsAlbert-Ludwig-University of FreiburgHermann-Herder-Str. 379104FreiburgGermany
| | - Michael Sommer
- Department of Polymer ChemistryInstitute for ChemistryChemnitz University of TechnologyStr. der Nationen 6209111ChemnitzGermany
| |
Collapse
|
2
|
Tang C. Fundamental Aspects of Stretchable Mechanochromic Materials: Fabrication and Characterization. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3980. [PMID: 39203158 PMCID: PMC11355797 DOI: 10.3390/ma17163980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024]
Abstract
Mechanochromic materials provide optical changes in response to mechanical stress and are of interest in a wide range of potential applications such as strain sensing, structural health monitoring, and encryption. Advanced manufacturing such as 3D printing enables the fabrication of complex patterns and geometries. In this work, classes of stretchable mechanochromic materials that provide visual color changes when tension is applied, namely, dyes, polymer dispersed liquid crystals, liquid crystal elastomers, cellulose nanocrystals, photonic nanostructures, hydrogels, and hybrid systems (combinations of other classes) are reviewed. For each class, synthesis and processing, as well as the mechanism of color change are discussed. To enable materials selection across the classes, the mechanochromic sensitivity of the different classes of materials are compared. Photonic systems demonstrate high mechanochromic sensitivity (Δnm/% strain), large dynamic color range, and rapid reversibility. Further, the mechanochromic behavior can be predicted using a simple mechanical model. Photonic systems with a wide range of mechanical properties (elastic modulus) have been achieved. The addition of dyes to photonic systems has broadened the dynamic range, i.e., the strain over which there is an optical change. For applications in which irreversible color change is desired, dye-based systems or liquid crystal elastomer systems can be formulated. While many promising applications have been demonstrated, manufacturing uniform color on a large scale remains a challenge. Standardized characterization methods are needed to translate materials to practical applications. The sustainability of mechanochromic materials is also an important consideration.
Collapse
Affiliation(s)
- Christina Tang
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
3
|
Khawdas W, Sawada Y, Miyata K, Okamura H, Taki K, Ito H. Enhancing the Delamination Efficiency of Polyimide-Copper Bilayers with UV/Heat-Activated Foamable Adhesive: Insights and Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31788-31797. [PMID: 38850559 DOI: 10.1021/acsami.4c04417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
This study explores the adhesive properties of copolymers comprising glycidyl methacrylate (GMA) and 3-(trimethoxysilyl)propyl methacrylate (MPTMS), focusing on their suitability for adhesive applications. Peel resistance measurements revealed a substantial impact of the GMA/MPTMS ratio on adhesion capabilities, identifying an optimal ratio of 30/70 for copolymerization with tert-butyl acrylate (tBA) to improve foaming performance. tBA, a foaming monomer activated by a photoacid generator and heat, enhances the copolymerized adhesive's adhesion strength and foamability for postuse delamination. Chemical structure analysis through Nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR) confirmed successful polymerization, while rheological properties indicated decreased complex viscosity and adhesive strength with an increasing tBA content. The deprotection of the t-butyl group facilitated foam formation, supported by morphology analysis. These findings provide insights into foamable adhesive development with potential applications in delamination processes and implications for further exploration in polymer adhesion.
Collapse
Affiliation(s)
- Wichean Khawdas
- Research Center for GREEN Materials and Advanced Processing, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Yuko Sawada
- Research Center for GREEN Materials and Advanced Processing, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Ken Miyata
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Haruyuki Okamura
- Department of Applied Chemistry Graduate School of Engineering, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Kentaro Taki
- Department of Frontier Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroshi Ito
- Research Center for GREEN Materials and Advanced Processing, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
4
|
Amirthalingam S, Rajendran AK, Moon YG, Hwang NS. Stimuli-responsive dynamic hydrogels: design, properties and tissue engineering applications. MATERIALS HORIZONS 2023; 10:3325-3350. [PMID: 37387121 DOI: 10.1039/d3mh00399j] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The field of tissue engineering and regenerative medicine has been evolving at a rapid pace with numerous novel and interesting biomaterials being reported. Hydrogels have come a long way in this regard and have been proven to be an excellent choice for tissue regeneration. This could be due to their innate properties such as water retention, and ability to carry and deliver a multitude of therapeutic and regenerative elements to aid in better outcomes. Over the past few decades, hydrogels have been developed into an active and attractive system that can respond to various stimuli, thereby presenting a wider control over the delivery of the therapeutic agents to the intended site in a spatiotemporal manner. Researchers have developed hydrogels that respond dynamically to a multitude of external as well as internal stimuli such as mechanics, thermal energy, light, electric field, ultrasonics, tissue pH, and enzyme levels, to name a few. This review gives a brief overview of the recent developments in such hydrogel systems which respond dynamically to various stimuli, some of the interesting fabrication strategies, and their application in cardiac, bone, and neural tissue engineering.
Collapse
Affiliation(s)
- Sivashanmugam Amirthalingam
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Gi Moon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
5
|
Zhou B, Liu J, Huang X, Qiu X, Yang X, Shao H, Tang C, Zhang X. Mechanoluminescent-Triboelectric Bimodal Sensors for Self-Powered Sensing and Intelligent Control. NANO-MICRO LETTERS 2023; 15:72. [PMID: 36964430 PMCID: PMC10039194 DOI: 10.1007/s40820-023-01054-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Self-powered flexible devices with skin-like multiple sensing ability have attracted great attentions due to their broad applications in the Internet of Things (IoT). Various methods have been proposed to enhance mechano-optic or electric performance of the flexible devices; however, it remains challenging to realize the display and accurate recognition of motion trajectories for intelligent control. Here, we present a fully self-powered mechanoluminescent-triboelectric bimodal sensor based on micro-nanostructured mechanoluminescent elastomer, which can patterned-display the force trajectories. The deformable liquid metals used as stretchable electrode make the stress transfer stable through overall device to achieve outstanding mechanoluminescence (with a gray value of 107 under a stimulus force as low as 0.3 N and more than 2000 cycles reproducibility). Moreover, a microstructured surface is constructed which endows the resulted composite with significantly improved triboelectric performances (voltage increases from 8 to 24 V). Based on the excellent bimodal sensing performances and durability of the obtained composite, a highly reliable intelligent control system by machine learning has been developed for controlling trolley, providing an approach for advanced visual interaction devices and smart wearable electronics in the future IoT era.
Collapse
Affiliation(s)
- Bo Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jize Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xin Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xiaoyan Qiu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xin Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Hong Shao
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu, 610200, People's Republic of China
| | - Changyu Tang
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu, 610200, People's Republic of China.
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
6
|
Lai Y, Li J, Chen M, Wu Y, Zhang Y, Zhao X, Chen Z. Multicolor Mechanochromic Epoxy Thermosets That Recognize the Intensity, Type, and Duration of Mechanical Stimulation. Macromol Rapid Commun 2023; 44:e2200821. [PMID: 36479907 DOI: 10.1002/marc.202200821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Indexed: 12/13/2022]
Abstract
Mechanochromic polymers that exhibit multiple color changes under external mechanical stimulation show great potential for sensor applications. Herein, an epoxy thermoset that can reveal the intensity, type, and duration of mechanical stimulation via a combination of disulfide (DS) and rhodamine (Rh) mechanochromophores is reported. A unique multicolor transition occurs upon ball mill or manual grinding because of the different activation energies of DS and Rh. The epoxy changes color depending on the ball mill grinding duration. Simultaneous activation occurs with a mechanochromic time lag between DS and Rh, and the collision energy strongly affects the relative intensity. A more dramatic multicolor response is observed using a mortar and pestle, as sequential activation occurs upon gentle and strong grinding. Various types of mechanical stimulation can cause different aggregates of the activated Rh moiety and vary the relative mechanosensitivities of Rh and DS, which lead to a different color response.
Collapse
Affiliation(s)
- Yingsheng Lai
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Jiajun Li
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Mao Chen
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Yeping Wu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Yinyu Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Xiuli Zhao
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Zhongtao Chen
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
| |
Collapse
|
7
|
Sugita H, Lu Y, Aoki D, Otsuka H, Mikami K. Theoretical and Experimental Investigations of Stable Arylfluorene-Based Radical-Type Mechanophores. Chemistry 2023; 29:e202203249. [PMID: 36575130 DOI: 10.1002/chem.202203249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Radical-type mechanophores (RMs) can undergo homolytic cleavage of their central C-C bonds upon exposure to mechanical forces, which affords radical species. Understanding the characteristics of these radical species allows bespoke mechanoresponsive materials to be designed and developed. The thermal stability of the central C-C bonds and the oxygen tolerance of the generated radical species are crucial characteristics that determine the functions and applicability of such RM-containing mechanoresponsive materials. In this paper, we report the synthesis and characterization of two series of arylfluorene-based RM derivatives, that is, 9,9'-bis(5-methyl-2-pyridyl)-9,9'-bifluorene (BPyF) and 9,9'-bis(4,6-diphenyl-2-triazyl)-9,9'-bifluorene (BTAF). BPyF and BTAF derivatives were synthesized without generating any peroxides initially, albeit that BPyF slowly converted to the corresponding peroxide in solution. DFT calculations revealed the importance of the thermodynamic stability and the values of the α-SOMO levels of the corresponding radical species for their thermal stability and oxygen tolerance. Furthermore, the mechanochromism of BTAF was demonstrated by ball-milling a BTAF-centered polymer, which was synthesized by atom-transfer radical polymerization (ATRP).
Collapse
Affiliation(s)
- Hajime Sugita
- Sagami Chemical Research Institute, 2743-1 Hayakawa, Ayase, Kanagawa, 252-1193, Japan.,Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yi Lu
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Koichiro Mikami
- Sagami Chemical Research Institute, 2743-1 Hayakawa, Ayase, Kanagawa, 252-1193, Japan
| |
Collapse
|
8
|
Lai Y, Chen M, Wu Y, Zhang Y, Zhao X, Chen Z. Epoxy thermosets with a multicolor switching during both compression and recovery processes. J Appl Polym Sci 2022. [DOI: 10.1002/app.52898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yingsheng Lai
- Institute of Chemical Materials China Academy of Engineering Physics Mianyang China
| | - Mao Chen
- Institute of Chemical Materials China Academy of Engineering Physics Mianyang China
| | - Yeping Wu
- Institute of Chemical Materials China Academy of Engineering Physics Mianyang China
| | - Yinyu Zhang
- Institute of Chemical Materials China Academy of Engineering Physics Mianyang China
| | - Xiuli Zhao
- Institute of Chemical Materials China Academy of Engineering Physics Mianyang China
| | - Zhongtao Chen
- Institute of Chemical Materials China Academy of Engineering Physics Mianyang China
| |
Collapse
|
9
|
Raisch M, Reiter G, Sommer M. Determining Entanglement Molar Mass of Glassy Polyphenylenes Using Mechanochromic Molecular Springs. ACS Macro Lett 2022; 11:760-765. [PMID: 35612497 DOI: 10.1021/acsmacrolett.2c00238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular force transduction in tough and glassy poly(meta,meta,para-phenylene) (PmmpP) was investigated as a function of Mn using covalently incorporated mechanochromic donor-acceptor torsional springs based on an ortho-substituted diphenyldiketopyrrolopyrrole (oDPP). Blending oDPP-PmmpP probe chains with long PmmpP matrix chains allowed us to investigate molar-mass-dependent mechanochromic properties for a series of specimens having mechanically identical properties. In the strain-hardening regime, the mechanochromic response (Δλmax,em) was found to be a linear function of the acting stress and fully reversible, making oDPP-PmmpP a real-time and quantitative stress sensor. For entangled and nonentangled probe chains, distinctly different values of Δλmax,em were observed, yielding a critical molar mass of Mc ≈ 11 kg mol-1 for PmmpP. Once physical cross-linking of oDPP in the network of PmmpP was ensured, Δλmax,em was found to be independent of Mn. The resulting value of Mc is in very good agreement with results from rheology.
Collapse
Affiliation(s)
- Maximilian Raisch
- Institute for Chemistry, Polymer Chemistry, Chemnitz University of Technology, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Günter Reiter
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Michael Sommer
- Institute for Chemistry, Polymer Chemistry, Chemnitz University of Technology, Straße der Nationen 62, 09111 Chemnitz, Germany
| |
Collapse
|
10
|
Mao Y, Kubota Y, Feng R, Gong J, Ishigami A, Kobayashi Y, Watabe T, Aoki D, Otsuka H, Ito H. Structure Reconfigurable Mechanochromic Polymer with Shape Memory and Strain-Monitored Function Enabled by a Covalent Adaptable Network. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuchen Mao
- Research Center for GREEN Materials & Advanced Processing, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Yuto Kubota
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Ruiqi Feng
- Department of Polymeric and Organic Materials Engineering, Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Jin Gong
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Akira Ishigami
- Research Center for GREEN Materials & Advanced Processing, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Yutaka Kobayashi
- Research Center for GREEN Materials & Advanced Processing, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Takuma Watabe
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Hiroshi Ito
- Research Center for GREEN Materials & Advanced Processing, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
11
|
Yanada K, Aoki D, Otsuka H. Mechanochromic elastomers with different thermo- and mechano-responsive radical-type mechanophores. SOFT MATTER 2022; 18:3218-3225. [PMID: 35383787 DOI: 10.1039/d1sm01786a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To design tough soft materials, the introduction of sacrificial bonds into their skeleton is a useful method. The introduction of radical-type mechanophores (RMs), which generate coloured radicals in response to mechanical stimuli, as sacrificial bonds into the cross-linking points of elastomers is expected to be a powerful tool to elucidate the fracture mechanisms as well as the toughening of materials, given that the radicals generated from the RMs are coloured and can be quantitatively evaluated using electron paramagnetic resonance (EPR) measurements. In this study, to investigate the effect of the dynamic nature, i.e., the reactivity, of RMs introduced at the cross-linking points of polymer networks on their macroscopic mechanical properties, polymer networks cross-linked by two different RMs, a symmetric radical-type mechanophore (DFSN) and a non-symmetric radical-type mechanophore (CF/ABF), were synthesized and characterized. Compared to the polymer network cross-linked by DFSN, the network with CF/ABF exhibited higher thermal and mechanical responses, in other words much more sensitive to heat and mechanical force, resulting in better stress relaxation and energy-dissipation properties. These results demonstrate that the reactivity of the radical mechanophore at the cross-linking point is an important factor for designing polymer networks.
Collapse
Affiliation(s)
- Kosaku Yanada
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
12
|
Wang W, Li M, Zhou P, Yan Z, Wang D. Design and synthesis of mechanochromic poly(ether-ester-urethane) elastomer with high toughness and resilience mediated by crystalline domains. Polym Chem 2022. [DOI: 10.1039/d2py00085g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanochromic elastomers play an important role in stain sensing, materials damage alarming and stress detecting, etc. Low activation strain and stress, high toughness and resilience, and self-recovery ability are essential...
Collapse
|