1
|
Szymaszek P, Tyszka-Czochara M, Ortyl J. Application of Photoactive Compounds in Cancer Theranostics: Review on Recent Trends from Photoactive Chemistry to Artificial Intelligence. Molecules 2024; 29:3164. [PMID: 38999115 PMCID: PMC11243723 DOI: 10.3390/molecules29133164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
According to the World Health Organization (WHO) and the International Agency for Research on Cancer (IARC), the number of cancer cases and deaths worldwide is predicted to nearly double by 2030, reaching 21.7 million cases and 13 million fatalities. The increase in cancer mortality is due to limitations in the diagnosis and treatment options that are currently available. The close relationship between diagnostics and medicine has made it possible for cancer patients to receive precise diagnoses and individualized care. This article discusses newly developed compounds with potential for photodynamic therapy and diagnostic applications, as well as those already in use. In addition, it discusses the use of artificial intelligence in the analysis of diagnostic images obtained using, among other things, theranostic agents.
Collapse
Affiliation(s)
- Patryk Szymaszek
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| | | | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Kraków, Poland
- Photo4Chem Ltd., Juliusza Lea 114/416A-B, 31-133 Cracow, Poland
| |
Collapse
|
2
|
Wu X, Barner-Kowollik C. Fluorescence-readout as a powerful macromolecular characterisation tool. Chem Sci 2023; 14:12815-12849. [PMID: 38023522 PMCID: PMC10664555 DOI: 10.1039/d3sc04052f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The last few decades have witnessed significant progress in synthetic macromolecular chemistry, which can provide access to diverse macromolecules with varying structural complexities, topology and functionalities, bringing us closer to the aim of controlling soft matter material properties with molecular precision. To reach this goal, the development of advanced analytical techniques, allowing for micro-, molecular level and real-time investigation, is essential. Due to their appealing features, including high sensitivity, large contrast, fast and real-time response, as well as non-invasive characteristics, fluorescence-based techniques have emerged as a powerful tool for macromolecular characterisation to provide detailed information and give new and deep insights beyond those offered by commonly applied analytical methods. Herein, we critically examine how fluorescence phenomena, principles and techniques can be effectively exploited to characterise macromolecules and soft matter materials and to further unravel their constitution, by highlighting representative examples of recent advances across major areas of polymer and materials science, ranging from polymer molecular weight and conversion, architecture, conformation to polymer self-assembly to surfaces, gels and 3D printing. Finally, we discuss the opportunities for fluorescence-readout to further advance the development of macromolecules, leading to the design of polymers and soft matter materials with pre-determined and adaptable properties.
Collapse
Affiliation(s)
- Xingyu Wu
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
3
|
Dumur F. Recent Advances in Monocomponent Visible Light Photoinitiating Systems Based on Sulfonium Salts. Polymers (Basel) 2023; 15:4202. [PMID: 37959882 PMCID: PMC10649563 DOI: 10.3390/polym15214202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
During the last decades, multicomponent photoinitiating systems have been the focus of intense research efforts, especially for the design of visible light photoinitiating systems. Although highly reactive three-component and even four-component photoinitiating systems have been designed, the complexity to elaborate such mixtures has incited researchers to design monocomponent Type II photoinitiators. Using this approach, the photosensitizer and the radical/cation generator can be combined within a unique molecule, greatly simplifying the elaboration of the photocurable resins. In this field, sulfonium salts are remarkable photoinitiators but these structures lack absorption in the visible range. Over the years, various structural modifications have been carried out in order to redshift their absorptions in the visible region. In this work, an overview of the different sulfonium salts activable under visible light and reported to date is proposed.
Collapse
Affiliation(s)
- Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| |
Collapse
|
4
|
Noworyta M, Topa-Skwarczyńska M, Jamróz P, Oksiuta D, Tyszka-Czochara M, Trembecka-Wójciga K, Ortyl J. Influence of the Type of Nanofillers on the Properties of Composites Used in Dentistry and 3D Printing. Int J Mol Sci 2023; 24:10549. [PMID: 37445729 DOI: 10.3390/ijms241310549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Photopolymerization is a growing field with an extensive range of applications and is environmentally friendly owing to its energy-efficient nature. Such light-assisted curing methods were initially used to cure the coatings. However, it has become common to use photopolymerization to produce 3D objects, such as bridges or dental crowns, as well as to cure dental fillings. In this study, polymer nanocomposites containing inorganic nanofillers (such as zinc nano-oxide and zinc nano-oxide doped with two wt.% aluminum, titanium nano-oxide, kaolin nanoclay, zirconium nano-oxide, aluminum nano-oxide, and silicon nano-oxide) were fabricated and studied using Real Time FT-IR to investigate the effects of these nanoadditives on the final conversion rates of the obtained nanocomposites. The effects of the fillers on the viscosity of the produced nanocomposites were also investigated, and 3D prints of the selected nanocomposites were presented.
Collapse
Affiliation(s)
- Małgorzata Noworyta
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Monika Topa-Skwarczyńska
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Paweł Jamróz
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Dawid Oksiuta
- Faculty of Mechanical Engineering, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland
| | | | - Klaudia Trembecka-Wójciga
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Cracow, Poland
| | - Joanna Ortyl
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
- Photo4Chem Ltd., Lea 114, 30-133 Cracow, Poland
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland
| |
Collapse
|
5
|
Zhang L, Li L, Chen Y, Pi J, Liu R, Zhu Y. Recent Advances and Challenges in Long Wavelength Sensitive Cationic Photoinitiating Systems. Polymers (Basel) 2023; 15:2524. [PMID: 37299323 PMCID: PMC10255707 DOI: 10.3390/polym15112524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
With the advantages offered by cationic photopolymerization (CP) such as broad wavelength activation, tolerance to oxygen, low shrinkage and the possibility of "dark cure", it has attracted extensive attention in photoresist, deep curing and other fields in recent years. The applied photoinitiating systems (PIS) play a crucial role as they can affect the speed and type of the polymerization and properties of the materials formed. In the past few decades, much effort has been invested into developing cationic photoinitiating systems (CPISs) that can be activated at long wavelengths and overcome technical problems and challenges faced. In this article, the latest developments in the long wavelength sensitive CPIS under ultraviolet (UV)/visible light-emitting diodes (LED) lights are reviewed. The objective is, furthermore, to show differences as well as parallels between different PIS and future perspectives.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- International Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi 214122, China
| | - Lun Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Ying Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Junyi Pi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Ren Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- International Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi 214122, China
| | - Yi Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- International Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Kaya K, Kiliclar HC, Yagci Y. Photochemically generated ionic species for cationic and step-growth polymerizations. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
7
|
Dumur F. Recent Advances on Anthraquinone-based Photoinitiators of Polymerization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
8
|
Li M, Hu P, Zhu J, Liu R, Li Z. Unimolecular Benzodioxole-based Photoinitiators for Free Radical and Cationic Photopolymerization Under LED Light Irradiation. J PHOTOPOLYM SCI TEC 2022. [DOI: 10.2494/photopolymer.35.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Mengqi Li
- School of Chemical and Material Engineering, Jiangnan University
| | - Peng Hu
- School of Chemical and Material Engineering, Jiangnan University
| | - Junzhe Zhu
- School of Chemical and Material Engineering, Jiangnan University
| | - Ren Liu
- School of Chemical and Material Engineering, Jiangnan University
| | - Zhiquan Li
- School of Materials and Energy, Guangdong University of Technology
| |
Collapse
|
9
|
Balcerak A, Kabatc J. Recent progress in the development of highly active dyeing photoinitiators based on 1,3-bis(p-substituted phenylamino)squaraines for radical polymerization of acrylates. Polym Chem 2022. [DOI: 10.1039/d1py01519b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photopolymerization is a very popular technique used in the production of various polymeric materials. The key role in the light induced polymerization processes plays a photoinitiator. One of the...
Collapse
|
10
|
Hola E, Gruchała A, Popielarz R, Ortyl J. Non-destructive visual inspection of photocurable coatings based on fluorescent response of naked-eye visible colorimetric and fluorescent sensors. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|