1
|
Kung DCN, Moon J, Cho Y, Kang H, Kang SW. Enhancing barrier properties of cellulose propionate films through the integration of ionic liquid: A study on water pressure resistance. Int J Biol Macromol 2024; 282:136680. [PMID: 39426774 DOI: 10.1016/j.ijbiomac.2024.136680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
This study pioneers the production of porous cellulose propionate (CP) films enhanced with tetrabutylammonium styrenesulfonate ([N4444][SS]), an ionic liquid, to bolster their resistance against water pressure. In contrast to polymer films with ionic liquids that have high moisture permeability, the CP/[N4444][SS] films exhibit remarkable water resistance even under 8 bar pressure. This is due to the physical cross-linking between the [N4444] ions and CP's polar groups, limiting CP chain mobility and thus reducing water interaction. Fourier-transform infrared spectroscopy confirmed these interactions, while scanning electron microscopy revealed a dense, unconnected porous structure. Thermogravimetric and differential scanning calorimetry analyses showed that adding [N4444][SS] increases the CP film's glass transition temperature, indicating enhanced thermal stability. Overall, the study demonstrates that integrating an ionic liquid into CP films significantly improves their barrier capabilities against water and pressure, which has broad implications for various industrial applications.
Collapse
Affiliation(s)
- Do Chun Nam Kung
- Department of Chemistry and Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Jihyeon Moon
- BK-21 Four Graduate Program, Department of Chemical Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Younghyun Cho
- Department of Energy Systems Engineering, Soonchunhyang University, Asan 31538, Republic of Korea.
| | - Hyo Kang
- BK-21 Four Graduate Program, Department of Chemical Engineering, Dong-A University, Busan 49315, Republic of Korea.
| | - Sang Wook Kang
- Department of Chemistry and Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
2
|
Sharma K, Agrawal A, Masud A, Satija SK, Ankner JF, Douglas JF, Karim A. Hiking down the Free Energy Landscape Using Sequential Solvent and Thermal Processing for Versatile Ordering of Block Copolymer Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21562-21574. [PMID: 37083352 DOI: 10.1021/acsami.2c21924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The kinetics and morphology of the ordering of block copolymer (BCP) films are highly dependent on the processing pathway, as the enthalpic and entropic forces driving the ordering processes can be quite different depending on process history. We may gain some understanding and control of this variability of BCP morphology with processing history through a consideration of the free energy landscape of the BCP material and a consideration of how the processing procedure moves the system through this energy landscape in a way that avoids having the system becoming trapped into well-defined metastable minima having a higher free energy than the target low free energy ordered structure. It is well known that standard thermal annealing (TA) of BCPs leads to structures corresponding to a well-defined stable free energy minimum; however, the BCP must be annealed for a very long time before the target low free energy structures can be achieved. Herein, we show that the same target low-energy structure can be achieved relatively quickly by subjecting as-cast films to an initial solvent annealing [direct immersion annealing (DIA) or solvent vapor annealing (SVA)] procedure, followed by a short period of TA. This process relies on lowering the activation energy barrier by reducing the glass-transition temperature through DIA (or SVA), followed by a multi-interface chain rearrangement through sequential TA. This energy landscape approach to ordering should be applicable to the process design for ordering many other complex materials.
Collapse
Affiliation(s)
- Kshitij Sharma
- William A. Brookshire, Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Aman Agrawal
- William A. Brookshire, Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Ali Masud
- William A. Brookshire, Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Sushil K Satija
- National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland 20899, United States
| | - John F Ankner
- Second Target Station Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Alamgir Karim
- William A. Brookshire, Department of Chemical & Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
3
|
Hao H, Chen S, Ren J, Chen X, Nealey P. Enhanced etching resolution of self-assembled PS-b-PMMA block copolymer films by ionic liquid additives. NANOTECHNOLOGY 2023; 34:205303. [PMID: 36709513 DOI: 10.1088/1361-6528/acb6df] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) is one of the most widely studied block copolymers for direct self-assembly because of its excellent compatibility with traditional processes. However, pattern transfer of PS-b-PMMA block copolymers (BCPs) remains a great challenge for its applications due to the insufficient etching resolution. In this study, the effect of ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate (HMHF) additives on the line edge roughness (LER) performances of PS-b-PMMA self-assembled patterns was studied. Trace addition of HMHF kept the photolithography compatibility of PS-b-PMMA block copolymer films, but obviously increased their Flory-Huggins interaction parameter (χ) and enabled phase separation of disordered low molecular weight BCPs. LER value was effectively decreased by blending HMHF directly with PS-b-PMMA or from a supplying top layer of polyvinylpyrrolidone containing HMHF additives. This study shows an excellent strategy to improve the deficiencies of existing block copolymers.
Collapse
Affiliation(s)
- Hongbo Hao
- College of Material Science & Engineering, Nanjing Tech University, Nanjing, 210009, Jiangsu, People's Republic of China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing, 210009, People's Republic of China
| | - Shuangjun Chen
- College of Material Science & Engineering, Nanjing Tech University, Nanjing, 210009, Jiangsu, People's Republic of China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing, 210009, People's Republic of China
| | - Jiaxing Ren
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, 60637, IL, United States of America
| | - Xuanxuan Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, 60637, IL, United States of America
| | - Paul Nealey
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, 60637, IL, United States of America
| |
Collapse
|
4
|
Wu W, Singh M, Zhai Y, Masud A, Tonny W, Yuan C, Yin R, Al-Enizi AM, Bockstaller MR, Matyjaszewski K, Douglas JF, Karim A. Facile Entropy-Driven Segregation of Imprinted Polymer-Grafted Nanoparticle Brush Blends by Solvent Vapor Annealing Soft Lithography. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45765-45774. [PMID: 36174114 DOI: 10.1021/acsami.2c11134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Polymer-grafted nanoparticles (PGNPs) have attracted extensive research interest due to their potential for enhancing mechanical and electrical properties of both bulk polymer composite materials, as well as thin polymer films incorporating these nanoparticles (NPs). In previous studies, we have shown that an entropic driving force serves to organize low-molecular-mass PGNPs in imprinted blend films of PGNPs with low-molecular-mass homopolymers. In this work, we developed a novel solvent vapor annealing soft lithography (SVA-SL) method to overcome the technical difficulties in processing the high-molecular-mass PGNP blends due to the intrinsically sluggish melt annealing kinetics found in the phase separation of these blend PGNP materials. In particular, we utilized SVA-SL to create nanopatterns in blends of PGNPs having relatively high-molecular-mass-grafted layers but with cores of NPs having greatly different sizes. The minimization of the entropic free energy in the present system corresponded to larger PGNPs partitioning almost exclusively into the "mesa" regions of the imprinted PGNP blend films, as quantified by the estimation of the partition coefficient, Kp. The use of the SVA-SL processing method is important because it allows facile imprint patterning of PGNP materials and large-scale organization of the PGNPs even when the grafted chain lengths are long enough for the chains to be highly entangled, allowing enhanced thermo-mechanical property enhancements of the resulting films and a corresponding extended range of potential nanotech applications.
Collapse
Affiliation(s)
- Wenjie Wu
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Maninderjeet Singh
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Yue Zhai
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Ali Masud
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Wafa Tonny
- Department of Materials Science and Engineering, University of Houston, Houston, Texas77204, United States
| | - Chuqing Yuan
- Department of Materials Science and Engineering, University of Houston, Houston, Texas77204, United States
| | - Rongguan Yin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh11451, Saudi Arabia
| | - Michael R Bockstaller
- Department of Materials Science and Engineering, University of Houston, Houston, Texas77204, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland20899, United States
| | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| |
Collapse
|
5
|
Petek ES, Katsumata R. Thickness Dependence of Contact Angles in Multilayered Ultrathin Polymer Films. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Evon S. Petek
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Dr, Amherst, Massachusetts 01003, United States
| | - Reika Katsumata
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Dr, Amherst, Massachusetts 01003, United States
| |
Collapse
|