1
|
Mei B, Schweizer KS. Medium-Range Structural Order as the Driver of Activated Dynamics and Complexity Reduction in Glass-Forming Liquids. J Phys Chem B 2024; 128:11293-11312. [PMID: 39481127 DOI: 10.1021/acs.jpcb.4c05488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
We analyze in depth the Elastically Collective Nonlinear Langevin Equation theory of activated dynamics in metastable liquids to establish that the predicted inter-relationships between the alpha relaxation time, local cage and collective elastic barriers, dynamic localization length, and shear modulus are causally related within the theory to the medium range order (MRO) static correlation length. The latter grows exponentially with density for metastable hard sphere fluids and as a nonuniversal inverse power law with temperature for supercooled liquids under isobaric conditions. The physical origin of predicted connections between the alpha time and other metrics of cage order and the thermodynamic inverse dimensionless compressibility is fully established. It is discovered that although kinetic constraints from the real space first coordination shell are important for the alpha time, they are of secondary importance compared to the consequences of the more universal MRO correlations in both the modestly and deeply metastable regimes. This understanding sheds new light on the theoretical basis for, and prior successes of, the predictive mapping of chemically complex thermal liquids to effective hard sphere fluids based on matching their dimensionless compressibilities, a scheme we call "complexity reduction". In essence, the latter is equivalent to the physical requirement that the thermal liquid MRO correlation equals that of its effective hard sphere analog. The mapping alone is shown to provide a remarkable level of quantitative predictive power for the glass transition temperature Tg of 21 molecular and polymer liquids. Predictions for the chemically specific absolute magnitude and growth with cooling of the MRO correlation length are obtained and lie in the window of 2-6 nm at Tg. Dynamic heterogeneity, elastic facilitation, and beyond pair structure issues are briefly discussed. Future opportunities to theoretically analyze the equilibrated deep glass regime are outlined.
Collapse
Affiliation(s)
- Baicheng Mei
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Department of Materials Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Materials Chemical & Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Zheng X, Xu L, Douglas JF, Xia W. Role of additive size in the segmental dynamics and mechanical properties of cross-linked polymers. NANOSCALE 2024; 16:16919-16932. [PMID: 39189325 DOI: 10.1039/d4nr02631d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Thermoset materials often involve the addition of molecular and nanoparticle additives to alter various chemo-physical properties of importance in their ultimate applications. The resulting compositional heterogeneities can lead to either enhancement or degradation of thermoset properties, depending on the additive chemical structure and concentration. We tentatively explore this complex physical phenomenon through the consideration of a model polymeric additive to our coarse-grained (CG) thermoset investigated in previous works by simply varying the size of additive segments compared to those of polymer melt. We find that the additive modified thermoset material becomes chemically heterogeneous from additive aggregation when the additive segments become much smaller than those of the thermoset molecules, and a clear evidence is observed in the spatial distribution of local molecular stiffness estimated from Debye-Waller factor 〈u2〉. Despite the non-monotonic variation trends observed in dynamical and mechanical properties with decreasing additive segmental size, both the structural relaxation time and moduli (i.e., shear modulus and bulk modulus) exhibit scaling laws with 〈u2〉. The present work highlights the complex role of additive size played in the dynamical and mechanical properties of thermoset polymers, which should provide a better understanding for the glass formation process of cross-linked polymer composites.
Collapse
Affiliation(s)
- Xiangrui Zheng
- Department of Mechanics, School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lan Xu
- Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, USA.
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
| | - Wenjie Xia
- Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
3
|
Chaki S, Mei B, Schweizer KS. Theoretical analysis of the structure, thermodynamics, and shear elasticity of deeply metastable hard sphere fluids. Phys Rev E 2024; 110:034606. [PMID: 39425383 DOI: 10.1103/physreve.110.034606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/19/2024] [Indexed: 10/21/2024]
Abstract
The structure, thermodynamics, and slow activated dynamics of the equilibrated metastable regime of glass-forming fluids remain a poorly understood problem of high theoretical and experimental interest. We apply a highly accurate microscopic equilibrium liquid state integral equation theory, in conjunction with naïve mode coupling theory of particle localization, to study in a unified manner the structural correlations, thermodynamic properties, and dynamic elastic shear modulus in deeply metastable hard sphere fluids. Distinctive behaviors are predicted including divergent inverse critical power laws for the contact value of the pair correlation function, pressure, and inverse dimensionless compressibility, and a splitting of the second peak and large suppression of interstitial configurations of the pair correlation function. The dynamic elastic modulus is predicted to exhibit two distinct exponential growth regimes with packing fraction that have strongly different slopes. These thermodynamic, structural, and elastic modulus results are consistent with simulations and experiments. Perhaps most unexpectedly, connections between the amplitude of long wavelength density fluctuations, dimensionless compressibility, local structure, and the dynamic elastic shear modulus have been theoretically elucidated. These connections are more broadly relevant to understanding the slow activated relaxation and mechanical response of colloidal suspensions in the ultradense metastable region and deeply supercooled thermal liquids in equilibrium.
Collapse
Affiliation(s)
- Subhasish Chaki
- Department of Materials Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Institut für Theoretische Physik II-Soft Matter, Heinrich-Heine-Universität, Düsseldorf-40225, Germany
| | | | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Departments of Chemistry and Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
4
|
Mei B, Grest GS, Liu S, O’Connor TC, Schweizer KS. Unified understanding of the impact of semiflexibility, concentration, and molecular weight on macromolecular-scale ring diffusion. Proc Natl Acad Sci U S A 2024; 121:e2403964121. [PMID: 39042674 PMCID: PMC11295076 DOI: 10.1073/pnas.2403964121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Conformationally fluctuating, globally compact macromolecules such as polymeric rings, single-chain nanoparticles, microgels, and many-arm stars display complex dynamic behaviors due to their rich topological structure and intermolecular organization. Synthetic rings are hybrid objects with conformations that display both ideal random walk and compact globular features, which can serve as models of genomic DNA. To date, emphasis has been placed on the effect of ring molecular weight on their unusual behaviors. Here, we combine simulations and a microscopic force-level theory to build a unified understanding for how key aspects of ring dynamics depend on different tunable molecular properties including backbone rigidity, monomer concentration, degree of traditional entanglement, and molecular weight. Our large-scale molecular dynamics simulations of ring melts with very different backbone stiffnesses reveal unanticipated behaviors which agree well with our generalized theory. This includes a universal master curve for center-of-mass diffusion constants as a function of molecular weight scaled by a chemistry and thermodynamic state-dependent critical molecular weight that generalizes the concept of an entanglement cross-over for linear chains. The key physics is how backbone rigidity and monomer concentration induced changes of the entanglement length, interring packing, degree of interpenetration, and liquid compressibility slow down space-time dynamic-force correlations on macromolecular scales. A power law decay of the center-of-mass diffusion constant with inverse molecular weight squared is the first consequence, followed by an ultraslow activated hopping transport regime. Our results set the stage to address slow dynamics and kinetic arrest in different families of compact synthetic and biological polymeric systems.
Collapse
Affiliation(s)
- Baicheng Mei
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | | | - Songyue Liu
- Department of Materials Science and Engineering, Carnegie-Mellon University, Pittsburgh, PA15213
| | - Thomas C. O’Connor
- Department of Materials Science and Engineering, Carnegie-Mellon University, Pittsburgh, PA15213
| | - Kenneth S. Schweizer
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
5
|
Mei B, Moreno AJ, Schweizer KS. Unified Understanding of the Structure, Thermodynamics, and Diffusion of Single-Chain Nanoparticle Fluids. ACS NANO 2024; 18:15529-15544. [PMID: 38842208 DOI: 10.1021/acsnano.4c00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Single-chain nanoparticles (SCNPs) are a fascinating class of soft nano-objects with promising properties and relevance to protein condensates, polymer nanocomposites, nanomedicine, bioimaging, catalysis, and drug delivery. We combine molecular dynamics simulations and equilibrium and time-dependent statistical mechanical theory to construct a unified understanding of how the internal conformational structure of SCNPs, of both a simple fractal globule-like form and more complex objects with multiple internal intermediate length scales, determines nm-scale intermolecular packing correlations, thermodynamic properties, and center-of-mass diffusion over a wide range of concentrations up to dense melts. The intermolecular pair correlations generically exhibit a distinctive deep correlation hole form due to SCNP internal connectivity structure and repulsive interparticle interactions associated with a globular-like conformation on the macromolecular scale, with concentration-dependent deviations at small separations. Unanticipated exponential-like dependences of the equation-of-state, osmotic compressibility, and center-of-mass diffusion constant on SCNP macromolecular packing fraction are theoretically predicted and confirmed via simulations. System-specific behaviors are found associated with SCNP internal structure, but overarching regularities are identified and understood based on a generalized effective globule conformation on macromolecular scales. Diffusivity slows down by 2-3 decades with increasing concentration and is understood as a consequence of a nonactivated excluded volume-driven weak-caging process associated with space-time correlated intermolecular forces experienced by the SCNP. Good agreement between the theory and simulations is established, testable predictions are made, and a quantitative comparison with viscosity measurements on a specific SCNP fluid is carried out. The basic theoretical approach can potentially be extended to treat the chemical and physical consequences of varying the structure of other classes of soft nanoparticles with distinctive internal nanoscale organization relevant in nanotechnology and nanomedicine, and the possible emergence of macromolecular kinetically arrested glasses.
Collapse
Affiliation(s)
- Baicheng Mei
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Angel J Moreno
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, Donostia-San Sebastián E-20018, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, Donostia-San Sebastián E-20018, Spain
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemical & Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Yang Z, Xu X, Douglas JF, Xu WS. Confinement effect of inter-arm interactions on glass formation in star polymer melts. J Chem Phys 2024; 160:044503. [PMID: 38265089 DOI: 10.1063/5.0185412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/25/2023] [Indexed: 01/25/2024] Open
Abstract
We utilized molecular dynamic simulation to investigate the glass formation of star polymer melts in which the topological complexity is varied by altering the number of star arms (f). Emphasis was placed on how the "confinement effect" of repulsive inter-arm interactions within star polymers influences the thermodynamics and dynamics of star polymer melts. All the characteristic temperatures of glass formation were found to progressively increase with increasing f, but unexpectedly the fragility parameter KVFT was found to decrease with increasing f. As previously observed, stars having more than 5 or 6 arms adopt an average particle-like structure that is more contracted relative to the linear polymer size having the same mass and exhibit a strong tendency for intermolecular and intramolecular segregation. We systematically analyzed how varying f alters collective particle motion, dynamic heterogeneity, the decoupling exponent ζ phenomenologically linking the slow β- and α-relaxation times, and the thermodynamic scaling index γt. Consistent with our hypothesis that the segmental dynamics of many-arm star melts and thin supported polymer films should exhibit similar trends arising from the common feature of high local segmental confinement, we found that ζ increases considerably with increasing f, as found in supported polymer films with decreasing thickness. Furthermore, increasing f led to greatly enhanced elastic heterogeneity, and this phenomenon correlates strongly with changes in ζ and γt. Our observations should be helpful in building a more rational theoretical framework for understanding how molecular topology and geometrical confinement influence the dynamics of glass-forming materials more broadly.
Collapse
Affiliation(s)
- Zhenyue Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Xiaolei Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| |
Collapse
|
7
|
Gagnon YJ, Burton JC, Roth CB. Development of broad modulus profile upon polymer-polymer interface formation between immiscible glassy-rubbery domains. Proc Natl Acad Sci U S A 2024; 121:e2312533120. [PMID: 38147561 PMCID: PMC10769838 DOI: 10.1073/pnas.2312533120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/01/2023] [Indexed: 12/28/2023] Open
Abstract
Interfaces of glassy materials such as thin films, blends, and composites create strong unidirectional gradients to the local heterogeneous dynamics that can be used to elucidate the length scales and mechanisms associated with the dynamic heterogeneity of glasses. We focus on bilayer films of two different polymers with very different glass transition temperatures ([Formula: see text]) where previous work has demonstrated a long-range (∼200 nm) profile in local [Formula: see text] is established between immiscible glassy and rubbery polymer domains when the polymer-polymer interface is formed to equilibrium. Here, we demonstrate that an equally long-ranged gradient in local modulus [Formula: see text] is established when the polymer-polymer interface ([Formula: see text]5 nm) is formed between domains of glassy polystyrene (PS) and rubbery poly(butadiene) (PB), consistent with previous reports of a broad [Formula: see text] profile in this system. A continuum physics model for the shear wave propagation caused by a quartz crystal microbalance across a PB/PS bilayer film is used to measure the viscoelastic properties of the bilayer during the evolution of the PB/PS interface showing the development of a broad gradient in local modulus [Formula: see text] spanning [Formula: see text]180 nm between the glassy and rubbery domains of PS and PB. We suggest these broad profiles in [Formula: see text] and [Formula: see text] arise from a coupling of the spectrum of vibrational modes across the polymer-polymer interface as a result of acoustic impedance matching of sound waves with [Formula: see text] nm during interface broadening that can then trigger density fluctuations in the neighboring domain.
Collapse
Affiliation(s)
| | | | - Connie B. Roth
- Department of Physics, Emory University, Atlanta, GA30322
| |
Collapse
|
8
|
Mei B, Schweizer KS. Penetrant shape effects on activated dynamics and selectivity in polymer melts and networks based on self-consistent cooperative hopping theory. SOFT MATTER 2023; 19:8744-8763. [PMID: 37937332 DOI: 10.1039/d3sm01139a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
We generalize and apply the microscopic self-consistent cooperative hopping theory for activated penetrant dynamics in polymer melts and crosslinked networks to address the role of highly variable non-spherical molecular shape. The focus is on vastly different shaped penetrants that have identical space filling volume in order to isolate how non-spherical shape explicitly modifies dynamics over a wide range of temperature down to the kinetic glass transition temperature. The theory relates intramolecular and intermolecular structure and kinetic constraints, and reveals how different solvation packing of polymer monomers around variable shaped penetrants impact penetrant hopping. A highly shape-dependent penetrant activated relaxation, including alpha time decoupling and trajectory level cooperativity of the hopping process, is predicted in the deeply supercooled regime for relatively larger penetrants which is sensitive to whether the polymer matrix is a melt or heavily crosslinked network. In contrast, for smaller size penetrants or at high/medium temperatures the effect of isochoric penetrant shape is relatively weak. We propose an aspect ratio variable that organizes how penetrant shape influences the activated relaxation times, leading to a (near) collapse or master curve. The relative absolute values of the penetrant relaxation time (inverse hopping rate) in polymer melts versus in crosslinked networks are found to be opposite when compared at a common absolute temperature versus when they are compared at a fixed value of distance from the glass transition based on the variable Tg/T with Tg the glass transition temperature. Quantitative comparison with recent diffusion experiments on chemically complex molecular penetrants of variable shape but fixed volume in crosslinked networks reveals good agreement, and testable new predictions are made. Extension of the theoretical approach to more complex systems of high experimental interest are discussed, including applications to realize selective transport in membrane separation applications.
Collapse
Affiliation(s)
- Baicheng Mei
- Department of Materials Science, University of Illinois, Urbana, IL 61801, USA.
- Materials Research Laboratory, University of Illinois, Urbana, IL 61801, USA
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, Urbana, IL 61801, USA.
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801, USA
- Materials Research Laboratory, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Das R, Bhowmik BP, Puthirath AB, Narayanan TN, Karmakar S. Soft pinning: Experimental validation of static correlations in supercooled molecular glass-forming liquids. PNAS NEXUS 2023; 2:pgad277. [PMID: 37680690 PMCID: PMC10482383 DOI: 10.1093/pnasnexus/pgad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
Enormous enhancement in the viscosity of a liquid near its glass transition is a hallmark of glass transition. Within a class of theoretical frameworks, it is connected to growing many-body static correlations near the transition, often called "amorphous ordering." At the same time, some theories do not invoke the existence of such a static length scale in the problem. Thus, proving the existence and possible estimation of the static length scales of amorphous order in different glass-forming liquids is very important to validate or falsify the predictions of these theories and unravel the true physics of glass formation. Experiments on molecular glass-forming liquids become pivotal in this scenario as the viscosity grows several folds (∼ 10 14 ), and simulations or colloidal glass experiments fail to access these required long-time scales. Here we design an experiment to extract the static length scales in molecular liquids using dilute amounts of another large molecule as a pinning site. Results from dielectric relaxation experiments on supercooled Glycerol with different pinning concentrations of Sorbitol and Glucose, as well as the simulations on a few model glass-forming liquids with pinning sites, indicate the versatility of the proposed method, opening possible new avenues to study the physics of glass transition in other molecular liquids.
Collapse
Affiliation(s)
- Rajsekhar Das
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- TIFR Center for Interdisciplinary Science, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Bhanu Prasad Bhowmik
- TIFR Center for Interdisciplinary Science, Tata Institute of Fundamental Research, Hyderabad 500046, India
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anand B Puthirath
- TIFR Center for Interdisciplinary Science, Tata Institute of Fundamental Research, Hyderabad 500046, India
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Tharangattu N Narayanan
- TIFR Center for Interdisciplinary Science, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Smarajit Karmakar
- TIFR Center for Interdisciplinary Science, Tata Institute of Fundamental Research, Hyderabad 500046, India
| |
Collapse
|
10
|
Ma XJ, Zhang R. Cooperative activated hopping dynamics in binary glass-forming liquids: effects of the size ratio, composition, and interparticle interactions. SOFT MATTER 2023. [PMID: 37317997 DOI: 10.1039/d3sm00312d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Slow dynamics in supercooled and glassy liquids is an important research topic in soft matter physics. Compared to the traditionally focused one-component systems, glassy dynamics in mixture systems adds in a rich set of new complexities, which are fundamentally interesting and also relevant for many technological applications. In this paper, we apply the recently developed self-consistent cooperative hopping theory (SCCHT) to systematically investigate the effects of the size ratio, composition and interparticle interactions on the cooperative activated hopping dynamics of matrix (in larger size) and penetrant (in smaller size) particles in varied binary sphere mixture model systems, with a specific focus on ultrahigh mixture packing fractions that mimic the deeply supercooled glass transition conditions for molecular/polymeric mixture materials. Analysis shows that in these high activation barrier cases, the long-range elastic distortion associated with a matrix particle hopping over its cage confinement always generates an elastic barrier of a nonnegligible magnitude, although the ratio between the elastic barrier and local barrier contribution is sensitively dependent on all three mixture-specific system factors considered in this work. SCCHT predicts two general scenarios of penetrant-matrix cooperative activated hopping dynamics: matrix/penetrant co-hopping (regime 1) or the penetrant mean barrier hopping time shorter than that of the matrix (regime 2). Increasing the penetrant-to-matrix size ratio or the penetrant-matrix cross-attraction strength is found to universally enlarge the composition window of regime 1. Diverse dynamical properties characterising different aspects of the cooperative activated hopping process, including the penetrant and matrix transient localization lengths, penetrant and matrix hopping jump distances, different types of local and elastic activated barriers, and matrix long-time diffusivity, relaxation time and dynamic fragility are quantitatively studied against a wide range of variations over the three system factors. Of particular interest is the universal "anti-plasticization" phenomenon achievable for sufficiently strong cross-attractive interactions. The prospects this work opens for the exploration of a wide variety of polymer-based mixture materials are briefly discussed at the end.
Collapse
Affiliation(s)
- Xiao-Juan Ma
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Rui Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
11
|
Jin J, Schweizer KS, Voth GA. Understanding dynamics in coarse-grained models. II. Coarse-grained diffusion modeled using hard sphere theory. J Chem Phys 2023; 158:034104. [PMID: 36681632 DOI: 10.1063/5.0116300] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The first paper of this series [J. Chem. Phys. 158, 034103 (2023)] demonstrated that excess entropy scaling holds for both fine-grained and corresponding coarse-grained (CG) systems. Despite its universality, a more exact determination of the scaling relationship was not possible due to the semi-empirical nature. In this second paper, an analytical excess entropy scaling relation is derived for bottom-up CG systems. At the single-site CG resolution, effective hard sphere systems are constructed that yield near-identical dynamical properties as the target CG systems by taking advantage of how hard sphere dynamics and excess entropy can be analytically expressed in terms of the liquid packing fraction. Inspired by classical equilibrium perturbation theories and recent advances in constructing hard sphere models for predicting activated dynamics of supercooled liquids, we propose a new approach for understanding the diffusion of molecular liquids in the normal regime using hard sphere reference fluids. The proposed "fluctuation matching" is designed to have the same amplitude of long wavelength density fluctuations (dimensionless compressibility) as the CG system. Utilizing the Enskog theory to derive an expression for hard sphere diffusion coefficients, a bridge between the CG dynamics and excess entropy is then established. The CG diffusion coefficient can be roughly estimated using various equations of the state, and an accurate prediction of accelerated CG dynamics at different temperatures is also possible in advance of running any CG simulation. By introducing another layer of coarsening, these findings provide a more rigorous method to assess excess entropy scaling and understand the accelerated CG dynamics of molecular fluids.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kenneth S Schweizer
- Department of Material Science, Department of Chemistry, Department of Chemical and Biomolecular Engineering, and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
12
|
Mei B, Sheridan GS, Evans CM, Schweizer KS. Elucidation of the physical factors that control activated transport of penetrants in chemically complex glass-forming liquids. Proc Natl Acad Sci U S A 2022; 119:e2210094119. [PMID: 36194629 PMCID: PMC9565165 DOI: 10.1073/pnas.2210094119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding the activated transport of penetrant or tracer atoms and molecules in condensed phases is a challenging problem in chemistry, materials science, physics, and biophysics. Many angstrom- and nanometer-scale features enter due to the highly variable shape, size, interaction, and conformational flexibility of the penetrant and matrix species, leading to a dramatic diversity of penetrant dynamics. Based on a minimalist model of a spherical penetrant in equilibrated dense matrices of hard spheres, a recent microscopic theory that relates hopping transport to local structure has predicted a novel correlation between penetrant diffusivity and the matrix thermodynamic dimensionless compressibility, S0(T) (which also quantifies the amplitude of long wavelength density fluctuations), as a consequence of a fundamental statistical mechanical relationship between structure and thermodynamics. Moreover, the penetrant activation barrier is predicted to have a factorized/multiplicative form, scaling as the product of an inverse power law of S0(T) and a linear/logarithmic function of the penetrant-to-matrix size ratio. This implies an enormous reduction in chemical complexity that is verified based solely on experimental data for diverse classes of chemically complex penetrants dissolved in molecular and polymeric liquids over a wide range of temperatures down to the kinetic glass transition. The predicted corollary that the penetrant diffusion constant decreases exponentially with inverse temperature raised to an exponent determined solely by how S0(T) decreases with cooling is also verified experimentally. Our findings are relevant to fundamental questions in glassy dynamics, self-averaging of angstrom-scale chemical features, and applications such as membrane separations, barrier coatings, drug delivery, and self-healing.
Collapse
Affiliation(s)
- Baicheng Mei
- Department of Materials Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Material Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Grant S. Sheridan
- Department of Materials Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Material Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Christopher M. Evans
- Department of Materials Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Material Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Kenneth S. Schweizer
- Department of Materials Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Material Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
13
|
Mei B, Schweizer KS. Theory of the Effects of Specific Attractions and Chain Connectivity on the Activated Dynamics and Selective Transport of Penetrants in Polymer Melts. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Baicheng Mei
- Department of Materials Science, University of Illinois, Urbana, Illinois61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States
| | - Kenneth S. Schweizer
- Department of Materials Science, University of Illinois, Urbana, Illinois61801, United States
- Department of Chemistry, University of Illinois, Urbana, Illinois61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, Illinois61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States
| |
Collapse
|
14
|
A new diffusion-control model based on the power law distribution for the cure kinetics of epoxy-anhydride thermoset resins. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04462-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Xu X, Douglas JF, Xu WS. Thermodynamic–Dynamic Interrelations in Glass-Forming Polymer Fluids. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaolei Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
16
|
Zheng X, Guo Y, Douglas JF, Xia W. Understanding the role of cross-link density in the segmental dynamics and elastic properties of cross-linked thermosets. J Chem Phys 2022; 157:064901. [PMID: 35963735 DOI: 10.1063/5.0099322] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cross-linking is known to play a pivotal role in the relaxation dynamics and mechanical properties of thermoset polymers, which are commonly used in structural applications because of their light weight and inherently strong nature. Here, we employ a coarse-grained (CG) polymer model to systematically explore the effect of cross-link density on basic thermodynamic properties as well as corresponding changes in the segmental dynamics and elastic properties of these network materials upon approaching their glass transition temperatures (Tg). Increasing the cross-link density unsurprisingly leads to a significant slowing down of the segmental dynamics, and the fragility K of glass formation shifts in lockstep with Tg, as often found in linear polymer melts when the polymer mass is varied. As a consequence, the segmental relaxation time τα becomes almost a universal function of reduced temperature, (T - Tg)/Tg, a phenomenon that underlies the applicability of the "universal" Williams-Landel-Ferry (WLF) relation to many polymer materials. We also test a mathematical model of the temperature dependence of the linear elastic moduli based on a simple rigidity percolation theory and quantify the fluctuations in the local stiffness of the network material. The moduli and distribution of the local stiffness likewise exhibit a universal scaling behavior for materials having different cross-link densities but fixed (T - Tg)/Tg. Evidently, Tg dominates both τα and the mechanical properties of our model cross-linked polymer materials. Our work provides physical insights into how the cross-link density affects glass formation, aiding in the design of cross-linked thermosets and other structurally complex glass-forming materials.
Collapse
Affiliation(s)
- Xiangrui Zheng
- Department of Mechanics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Yafang Guo
- Department of Mechanics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Wenjie Xia
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, USA
| |
Collapse
|
17
|
Novikov VN, Sokolov AP. Temperature Dependence of Structural Relaxation in Glass-Forming Liquids and Polymers. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1101. [PMID: 36010765 PMCID: PMC9407199 DOI: 10.3390/e24081101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Understanding the microscopic mechanism of the transition of glass remains one of the most challenging topics in Condensed Matter Physics. What controls the sharp slowing down of molecular motion upon approaching the glass transition temperature Tg, whether there is an underlying thermodynamic transition at some finite temperature below Tg, what the role of cooperativity and heterogeneity are, and many other questions continue to be topics of active discussions. This review focuses on the mechanisms that control the steepness of the temperature dependence of structural relaxation (fragility) in glass-forming liquids. We present a brief overview of the basic theoretical models and their experimental tests, analyzing their predictions for fragility and emphasizing the successes and failures of the models. Special attention is focused on the connection of fast dynamics on picosecond time scales to the behavior of structural relaxation on much longer time scales. A separate section discusses the specific case of polymeric glass-forming liquids, which usually have extremely high fragility. We emphasize the apparent difference between the glass transitions in polymers and small molecules. We also discuss the possible role of quantum effects in the glass transition of light molecules and highlight the recent discovery of the unusually low fragility of water. At the end, we formulate the major challenges and questions remaining in this field.
Collapse
Affiliation(s)
- Vladimir N. Novikov
- Institute of Automation and Electrometry, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexei P. Sokolov
- Department of Chemistry and Joint Institute for Neutron Sciences, University of Tennessee, Knoxville, TN 37996, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
18
|
Mei B, Lin TW, Sheridan GS, Evans CM, Sing CE, Schweizer KS. Structural Relaxation and Vitrification in Dense Cross-Linked Polymer Networks: Simulation, Theory, and Experiment. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Baicheng Mei
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Tsai-Wei Lin
- Department of Chemical & Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Grant S. Sheridan
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Christopher M. Evans
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemical & Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Charles E. Sing
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemical & Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Kenneth S. Schweizer
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemical & Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Mei B, Zhuang B, Lu Y, An L, Wang ZG. Local-Average Free Volume Correlates with Dynamics in Glass Formers. J Phys Chem Lett 2022; 13:3957-3964. [PMID: 35481369 DOI: 10.1021/acs.jpclett.2c00072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glass formers exhibit a pronounced slowdown in dynamics, accompanied by progressive heterogeneity as they approach the glass transition. There is intense debate over whether the dramatic slowdown is caused by dynamical heterogeneity and whether the enhanced dynamical heterogeneity originates from structural causes. However, the connection between dynamical heterogeneity and the spatial distribution of the single-particle free volume (a purely static structural quantity) was found to be rather weak, which raises the question of whether dynamic heterogeneity has a purely structural origin. Here, by introducing the concept of local-average free volume, we present numerical evidence that long-time dynamic heterogeneity shows significantly enhanced correlation with the average local free volume over a length scale of a few neighboring shells. Our results resolve the long-standing controversy about whether free volume plays an important role in particle rearrangements associated with the activated hopping relaxation. The concept of "local average" can be applied to other local structural descriptors to better correlate with dynamic heterogeneity in glass-forming liquids.
Collapse
Affiliation(s)
- Baicheng Mei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | | | - Yuyuan Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lijia An
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
20
|
Zhou Y, Mei B, Schweizer KS. Activated Relaxation in Supercooled Monodisperse Atomic and Polymeric WCA Fluids: Simulation and ECNLE Theory . J Chem Phys 2022; 156:114901. [DOI: 10.1063/5.0079221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We combine simulation and Elastically Collective Nonlinear Langevin Equation (ECNLE) theory to study the activated relaxation in monodisperse atomic and polymeric WCA liquids over a wide range of temperatures and densities in the supercooled regime under isochoric conditions. By employing novel crystal-avoiding simulations, metastable equilibrium dynamics is probed in the absence of complications associated with size polydispersity. Based on highly accurate structural input from integral equation theory, ECNLE theory is found to describe well the simulated density and temperature dependences of the alpha relaxation time of atomic fluids using a single system-specific parameter, ac, that reflects the nonuniversal relative importance of the local cage and collective elastic barriers. For polymer fluids, the explicit dynamical effect of local chain connectivity is modeled at the fundamental dynamic free energy level based on a different parameter, Nc, that quantifies the degree of intramolecular correlation of bonded segment activated barrier hopping. For the flexible chain model studied, a physically intuitive value of Nc≈2 results in good agreement between simulation and theory. A direct comparison between atomic and polymeric systems reveals chain connectivity can speed up activated segmental relaxation due to weakening of equilibrium packing correlations, but can slow down relaxation due to local bonding constraints. The empirical thermodynamic scaling idea for the alpha time is found to work well at high densities or temperatures, but fails when both density and temperature are low. The rich and subtle behaviors revealed from simulation for atomic and polymeric WCA fluids are all well captured by ECNLE theory.
Collapse
Affiliation(s)
- Yuxing Zhou
- UIUC, University of Illinois at Urbana-Champaign Department of Materials Science and Engineering, United States of America
| | - Baicheng Mei
- University of Illinois at Urbana-Champaign Department of Materials Science and Engineering, United States of America
| | - Kenneth S. Schweizer
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, United States of America
| |
Collapse
|
21
|
Mei B, Zhou Y, Schweizer KS. Long Wavelength Thermal Density Fluctuations in Molecular and Polymer Glass-Forming Liquids: Experimental and Theoretical Analysis under Isobaric Conditions. J Phys Chem B 2021; 125:12353-12364. [PMID: 34723527 DOI: 10.1021/acs.jpcb.1c06840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We establish via an in-depth analysis of experimental data that the dimensionless compressibility (proportional to the dimensionless amplitude of long wavelength thermal density fluctuations) of one-component normal and supercooled liquids of chemically complex nonpolar and weakly polar molecules and polymers follows extremely well a surprisingly simple and general temperature dependence over an exceptionally wide range of pressures and temperatures. A theoretical basis for this behavior is shown to exist in the venerable van der Waals model and its more modern interpretations. Although associated hydrogen-bonding (and to a lesser degree strongly polar) liquids display modestly more complex behavior, rather simple temperature and pressure dependences are also discovered. A new approach to collapse the temperature- and pressure-dependent dimensionless compressibility data onto a master curve is formulated that differs from the empirical thermodynamic scaling approach. As a practical matter, we also find that the dimensionless compressibility scales well as an inverse power law with temperature with an exponent that is system dependent and decreases with pressure. At very high pressures and low temperatures, the thermal liquid behavior appears to approach (but not reach) a repulsion-dominated random close packing limit. All these findings are relevant to our recent theoretical work on the problem of activated relaxation and vitrification of supercooled molecular and polymeric liquids.
Collapse
Affiliation(s)
- Baicheng Mei
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States.,Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Yuxing Zhou
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States.,Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States.,Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|