1
|
Verjans J, André A, Sedlačík T, Aksakal R, van Ruymbeke E, Hoogenboom R. Physically crosslinked polyacrylates by quadruple hydrogen bonding side chains. J Mater Chem B 2024. [PMID: 39484839 DOI: 10.1039/d4tb01702a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Dynamic polymer materials can be obtained by introducing supramolecular interactions between the polymer chains. Here we report on the preparation and mechanical properties of poly(methyl acrylate) (PMA) and poly(n-butyl acrylate) (PBA) funcionalized with ureidopyrimidinone (UPy) in the side chains. In contrast to the traditional UPy with a methyl group, the selected UPy motif contained a branched alkyl side chain, which enhances solubility, compatibility with the polymer matrix and potentially prevents stacking of UPy dimers. Low molar mass PMA and PBA were synthesized via Cu(0)-mediated radical polymerization and allyl bonds were introduced with different degrees of functionalization by stoichiometrically controlled transesterification with allyl alcohol. The allyl esters served as functional handles for UPy attachment via UV-initiated radical thiol-ene coupling. The PMA-UPy materials displayed a more glassy appearance, in contrast to the rubbery PBA-UPy polymer networks, associated to its higher glass transition temperature. The mechanical properties of the resulting hydrogen bonded polymer networks were assessed by thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical thermal analysis and tensile testing, followed by rheological analysis of the network dynamics. Furthermore, the effect of associative groups on the linear viscoelastic response is discussed based on a modified sticky Rouse model indicating the absence of significant aggregation or phase separation of the UPY units.
Collapse
Affiliation(s)
- Jente Verjans
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, B-9000 Ghent, Belgium.
| | - Alexis André
- Bio- and Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
- Soft Matter, Rheology and Technology (SMaRT), Department of Chemical Engineering, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium
| | - Tomáš Sedlačík
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, B-9000 Ghent, Belgium.
| | - Resat Aksakal
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, B-9000 Ghent, Belgium
| | - Evelyne van Ruymbeke
- Bio- and Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, B-9000 Ghent, Belgium.
| |
Collapse
|
2
|
Konar D, Stewart KA, Moerschel J, Rynk JF, Sumerlin BS. Polysquaramides. ACS Macro Lett 2024; 13:972-978. [PMID: 39038279 DOI: 10.1021/acsmacrolett.4c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Thermoplastics, while advantageous for their processability and recyclability, often compromise thermochemical stability and mechanical strength compared to thermosets. Addressing this limitation, we introduce an innovative approach employing reversibly cross-linked polymers, utilizing squaramide moieties to reconcile recyclability and robustness. Herein, we detail the synthesis of supramolecularly cross-linked polysquaramides through the condensation polymerization of diethyl squarate with primary and secondary diamines. This methodology embeds hydrogen-bonding squaramide motifs into the polymer chains, yielding materials with significantly enhanced storage moduli, reaching up to 1.2 GPa. Material characterization via dynamic mechanical analysis, creep-recovery, and stress relaxation experiments delineate a distinctive rubbery plateau across a broad temperature range, excellent creep resistance, and multimodal viscoelastic flow, respectively, attributable to the dynamic nature of the supramolecular cross-links. Additionally, the study showcases the modulation of glass transition temperature (Tg) by altering the monomer composition and stoichiometry, demonstrating the tunability of polymer viscoelastic properties through precise control over hydrogen bonding interactions. Overall, the incorporation of squaramide motifs not only provides the structural integrity and mechanical performance of these thermoplastics but also leads to engineering materials with tailored viscoelastic characteristics.
Collapse
Affiliation(s)
- Debabrata Konar
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Kevin A Stewart
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Jack Moerschel
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - John F Rynk
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Brent S Sumerlin
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
3
|
Aoki D, Yasuda K, Arimitsu K. Toughening Ionic Polymer Using Bulky Alkylammonium Counterions and Comb Architecture. ACS Macro Lett 2023; 12:462-467. [PMID: 36962000 PMCID: PMC10116644 DOI: 10.1021/acsmacrolett.2c00737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Ionic interactions in ionic polymers, such as ionomers, polyelectrolytes, and polyampholytes, contribute to toughness in systems with high mobility and active ion dynamics, such as hydrogels and elastomers. However, it remains challenging to toughen rigid polymers through ionic interactions without lowering their elastic modulus through plasticization. Here, we present a strategy for toughening without sacrificing the elastic modulus by combining a comb polymer with bulky ammonium counterions. We designed and synthesized ionic comb polymers with oligoethylene glycol side chains and carboxylic acids in each monomer unit of the polynorbornene backbone, neutralized by trialkylamines, ranging from ethyl to octyl. The counterion size in ionic comb polymers influenced the mechanical properties of tensile testing─not the elongation at break and the elastic modulus but the ultimate strength and toughness. The ionic comb polymer containing heptylammonium counterions displayed the highest toughness of 77 MJ m-3. Tensile studies at various strain rates demonstrated a rate-dependent difference between heptyl- and octylammonium counterions. This result suggests that the heptylammonium counterion acted as a sacrificial bond by providing a moderate dissociation rate that was slightly slower than that of the octylammonium counterion, leading to toughening.
Collapse
Affiliation(s)
- Daisuke Aoki
- Department of Pure and Applied Chemistry, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kento Yasuda
- Department of Pure and Applied Chemistry, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Koji Arimitsu
- Department of Pure and Applied Chemistry, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
4
|
Huysecom AS, Thielemans W, Moldenaers P, Cardinaels R. A Generalized Mechano-statistical Transient Network Model for Unravelling the Network Topology and Elasticity of Hydrophobically Associating Multiblock Copolymers in Aqueous Solutions. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- An-Sofie Huysecom
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001Leuven, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500Kortrijk, Belgium
| | - Paula Moldenaers
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001Leuven, Belgium
| | - Ruth Cardinaels
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001Leuven, Belgium
- Processing and Performance of Materials, Department of Mechanical Engineering, TU Eindhoven, Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
5
|
Chen Y, Yang W, Liu J, Wang Y, Luo Y. The characteristics and mechanism of hydrogen bonding assembly in linear polyurethane with multiple pendant 2‐ureido‐4[1
H
]‐pyrimidone units. J Appl Polym Sci 2022. [DOI: 10.1002/app.53520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yimei Chen
- Lab for Smart & Bioinspired Materials, College of Bioengineering Chongqing University Chongqing China
- Key Lab of Biorheological Science and Technology Ministry of Education Chongqing China
| | - Wei Yang
- Lab for Smart & Bioinspired Materials, College of Bioengineering Chongqing University Chongqing China
- Key Lab of Biorheological Science and Technology Ministry of Education Chongqing China
| | - Juan Liu
- Lab for Smart & Bioinspired Materials, College of Bioengineering Chongqing University Chongqing China
- Key Lab of Biorheological Science and Technology Ministry of Education Chongqing China
| | - Yuanliang Wang
- Lab for Smart & Bioinspired Materials, College of Bioengineering Chongqing University Chongqing China
- Key Lab of Biorheological Science and Technology Ministry of Education Chongqing China
| | - Yanfeng Luo
- Lab for Smart & Bioinspired Materials, College of Bioengineering Chongqing University Chongqing China
- Key Lab of Biorheological Science and Technology Ministry of Education Chongqing China
| |
Collapse
|
6
|
Yuan Y, Liu Y, Liu K, Hua J. Structurally controllable anisotropic polymer brushes and their application in antifouling nanocoatings. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Ahmadi M, Jangizehi A, Seiffert S. Backbone Polarity Tunes Sticker Clustering in Hydrogen-Bonded Supramolecular Polymer Networks. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mostafa Ahmadi
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Amir Jangizehi
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|