1
|
Shioya N, Yoshida M, Fujii M, Eda K, Hasegawa T. Disappearance of Odd-Even Effects at the Substrate Interface of n-Alkanes. J Am Chem Soc 2024; 146:32032-32039. [PMID: 39515837 DOI: 10.1021/jacs.4c12289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The physical and chemical properties of organic compounds having alkyl chains are frequently influenced by the parity of the chain length, which is known as the odd-even effect. Understanding the molecular origin of this phenomenon is particularly important for designing materials used in organic thin-film devices. In this work, we focus on thin films of n-alkanes as the simplest model to study the odd-even effect at the substrate interface and analyze the aggregation structure using p-polarized multiple-angle incidence resolution spectrometry in combination with grazing incidence X-ray diffraction. The spectroscopic analysis shows a pronounced odd-even alternation of the molecular tilt angles in the multilayer films. In addition, high-resolution Brewster-angle transmission spectroscopy reveals that the conformation of the methyl group highly depends on whether the carbon number is even or odd. In contrast to the multilayer films, the odd-even effects do not appear in the monolayer films. We demonstrate that, in other words, the interlayer interactions of the molecules are responsible for the odd-even effects. This study also highlights the first identification of the monolayer phase of n-alkanes by using grazing incidence X-ray diffraction in combination with high-resolution infrared spectroscopy. These results not only reveal the molecular origin for the odd-even effect of n-alkanes but also provide analytical techniques for discussing the monolayer structure of various alkylated compounds on a functional group basis.
Collapse
Affiliation(s)
- Nobutaka Shioya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Mariko Yoshida
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masamichi Fujii
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kazuo Eda
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokko-dai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Takeshi Hasegawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
2
|
Wang S, Mandal M, Zhang H, Breiby DW, Yildiz O, Ling Z, Floudas G, Bonn M, Andrienko D, Wang HI, Blom PWM, Pisula W, Marszalek T. Odd-Even Alkyl Chain Effects on the Structure and Charge Carrier Transport of Two-Dimensional Sn-Based Perovskite Semiconductors. J Am Chem Soc 2024; 146:19128-19136. [PMID: 38953716 PMCID: PMC11258789 DOI: 10.1021/jacs.4c03936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Oscillations in the chemical or physical properties of materials, composed of an odd or even number of connected repeating methylene units, are a well-known phenomenon in organic chemistry and materials science. So far, such behavior has not been reported for the important class of materials, perovskite semiconductors. This work reports a distinct odd-even oscillation of the molecular structure and charge carrier transport properties of phenylalkylammonium two-dimensional (2D) Sn-based perovskites in which the alkyl chains in the phenylalkylammonium cations contain varying odd and even carbon numbers. Density functional theory calculations and grazing-incidence wide-angle X-ray scattering characterization reveal that perovskites with organic ligands containing an alkyl chain with an odd number of carbon atoms display a disordered crystal lattice and tilted inorganic octahedra accompanied by reduced mobilities. In contrast, perovskites with cations of an even number of carbon atoms in the alkyl chain form more ordered crystal structures, resulting in improved charge carrier mobilities. Our findings disclose the importance of minor changes in the molecular conformation of organic cations have an effect on morphology, photophysical properties, and charge carrier transport of 2D layered perovskites, showcasing alkyl chain engineering of organic cations to control key properties, of layered perovskite semiconductors.
Collapse
Affiliation(s)
- Shuanglong Wang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Mukunda Mandal
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Heng Zhang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Dag W. Breiby
- Department
of Physics, Norwegian University of Science
and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Okan Yildiz
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Zhitian Ling
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - George Floudas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physics, University of Ioannina, P.O. Box 1186, Ioannina 451 10, Greece
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Denis Andrienko
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Hai I. Wang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Nanophotonics,
Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, CC Utrecht 3584, The Netherlands
| | - Paul W. M. Blom
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Wojciech Pisula
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland
| | - Tomasz Marszalek
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland
| |
Collapse
|
3
|
Qi Q, Wang J, Gao M, Ke H, Zhao W, Zhang K, Li S, He C, Kuvondikov V, Ye L. A Dual-Polythiophene Blending Strategy to Reduce the Efficiency-Stability-Cost Gap of Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307993. [PMID: 37946405 DOI: 10.1002/smll.202307993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/07/2023] [Indexed: 11/12/2023]
Abstract
Benefiting from the photovoltaic material innovation and delicate device optimization, high-efficiency solar cells employing polymeric materials are thriving. Reducing the gap of cost, efficiency, and stability is the critical challenge faced by the emerging solar cells such as organics, quantum dots and perovskites. Poly(3-alkylthiophene) demonstrates great potential in organic solar cells and quantum dot solar cells as the active layer or the hole transport layer due to its large scalability, excellent photoelectric performance, and favorable hydrophobicity. The present low efficiency and insufficient stability, restrict its commercial application. In this work, a facile strategy of blending two simple polythiophenes is put forward to manipulate the film microstructure and enhance the device efficiency and thermal stability of solar cells. The introduction of P3PT can improve the power conversion efficiency (PCE) of a benchmark cost-effective blend P3HT:O-IDTBR to 7.41%, and the developed ternary solar cells also exhibit increased thermal stability. More strikingly, the quantum dot solar cells with the dual-polythiophene hole transport layer achieve the highest PCE of 10.51%, which is among the topmost efficiencies for quantum dots/polythiophene solar cells. Together, this work provides an effective route to simultaneously optimize the device efficiency and thermal stability of solar cells.
Collapse
Affiliation(s)
- Qingchun Qi
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, 350108, China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Jingjing Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Mengyuan Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Huizhen Ke
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, 350108, China
| | - Wenchao Zhao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Kai Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Sunsun Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Chunyong He
- Spallation Neutron Source Science Center, Dongguan, 523803, China
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Vakhobjon Kuvondikov
- Institute of Ion-Plasma and Laser Technologies, Uzbekistan Academy of Sciences, 33, Durmon yuli, Tashkent, 100125, Uzbekistan
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
- Hubei Longzhong Laboratory, Xiangyang, 441000, China
| |
Collapse
|
4
|
Sun Z, Khau B, Dong H, Takacs CJ, Yuan S, Sun M, Mosevitzky Lis B, Nguyen D, Reichmanis E. Carboxyl-Alkyl Functionalized Conjugated Polyelectrolytes for High Performance Organic Electrochemical Transistors. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:9299-9312. [PMID: 38027548 PMCID: PMC10653087 DOI: 10.1021/acs.chemmater.3c02103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Contemporary design principles for organic mixed ionic electronic conductors (OMIECs) are mostly based on the ethylene glycol moiety, which may not be representative of the OMIEC class as a whole. Furthermore, glycolated polymers can be difficult to synthesize and process effectively. As an emerging alternative, we present a series of polythiophenes functionalized with a hybrid carboxyl-alkyl side chain. By variation of the alkyl spacer length, a comprehensive evaluation of both the impact of carboxylic acid functionalization and alkyl spacer length was conducted. COOH-functionalization endows the polymer with preferential intrinsic low-swelling behavior and water processability to yield solvent-resistant conjugated polyelectrolytes while retaining substantial electroactivity in aqueous environments. Advanced in situ techniques, including time-resolved spectroelectrochemistry and Raman spectroscopy, are used to interrogate the materials' microstructure, ionic-electronic coupling, and operational stability in devices. To compare these materials' performance to state-of-the-art technology for the design of OMIECs, we benchmarked the materials and demonstrated significant application potential in both planar and interdigitated organic electrochemical transistors (OECTs). The polythiophene bearing carboxyl-butyl side chains exhibits greater electrochemical performance and faster doping kinetics within the polymer series, with a record-high OECT performance among conjugated polyelectrolytes ([μC*]pOECT = 107 ± 4 F cm-1 V-1 s-1). The results provide an enhanced understanding of structure-property relationships for conjugated polyelectrolytes operating in aqueous media and expand the materials options for future OMIEC development. Further, this work demonstrates the potential for conjugated polymers bearing alkyl-COOH side chains as a path toward robust OMIEC designs that may facilitate further facile (bio)chemical functionalization for a range of (bio)sensing applications.
Collapse
Affiliation(s)
- Zeyuan Sun
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Brian Khau
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hao Dong
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Christopher J. Takacs
- Stanford
Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Shuhan Yuan
- Department
of Applied Health Science, School of Public Health, Indiana University, Bloomington, Indiana 47405, United States
| | - Mengting Sun
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Bar Mosevitzky Lis
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Dang Nguyen
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Elsa Reichmanis
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
5
|
He J, Liang Z, Lin L, Liang S, Xu J, Ni W, Li M, Geng Y. Polythiophenes with alkylthiophene side chains for efficient polymer solar cells. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Liu J, Wang J, Xian K, Zhao W, Zhou Z, Li S, Ye L. Organic and quantum dot hybrid photodetectors: towards full-band and fast detection. Chem Commun (Camb) 2023; 59:260-269. [PMID: 36510729 DOI: 10.1039/d2cc05281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Photodetectors hold great application potential in many fields such as image sensing, night vision, infrared communication and health monitoring. To date, commercial photodetectors mainly rely on inorganic semiconductors, e.g., monocrystalline silicon, germanium, and indium selenide/gallium with complex and costly fabrication, which are hardly compatible with wearable electronics. In contrast, organic conjugated materials provide great superiority in flexibility and stretchability. In this Highlight, the unique properties of organic and quantum dot photodetectors were firstly discussed to reveal the great complementarity of the two technologies. Subsequently, the recent advance of organic/quantum dot hybrid photodetectors was outlined to highlight their great potential in developing broadband and high-performance photodetectors. Moreover, the multiple functions (e.g., dual-band detection and upconversion detection) of hybrid photodetectors were highlighted for their promising application in image sensing and infrared detection. Lastly, we present a forword-looking discussion on the challenges and our insights for the further advancement of hybrid photodetectors. This work may spark enormous research attention in organic/quantum dot electronics and advance the commercial applications.
Collapse
Affiliation(s)
- Junwei Liu
- School of Materials Science and Engineering, School of Environmental Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, China. .,State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China.
| | - Jingjing Wang
- School of Materials Science and Engineering, School of Environmental Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, China.
| | - Kaihu Xian
- School of Materials Science and Engineering, School of Environmental Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, China.
| | - Wenchao Zhao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhihua Zhou
- School of Materials Science and Engineering, School of Environmental Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, China.
| | - Shaojuan Li
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China.
| | - Long Ye
- School of Materials Science and Engineering, School of Environmental Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, China. .,State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China.
| |
Collapse
|
7
|
Yang X, Gao M, Bi Z, Liu Y, Xian K, Peng Z, Qi Q, Li S, Song J, Ma W, Ye L. Unraveling the Photovoltaic, Mechanical, and Microstructural Properties and Their Correlations in Simple Poly(3-pentylthiophene) Solar Cells. Macromol Rapid Commun 2022; 43:e2200229. [PMID: 35591795 DOI: 10.1002/marc.202200229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/25/2022] [Indexed: 11/09/2022]
Abstract
The power conversion efficiency of polythiophene organic solar cells is constantly refreshed. Despite the renewed device efficiency, very few efforts have been devoted to understanding how the type of electron acceptor alters the photovoltaic and mechanical properties of these low-cost solar cells. Herein, we conduct a thorough investigation of photovoltaic and mechanical characteristics of a simple yet less explored polythiophene, namely poly(3-pentylthiophene) (P3PT), in three different types of organic solar cells, where ZY-4Cl, PC71 BM, and N2200 are employed as three representative acceptors, respectively. Compared with the reference P3HT-based solar cells, P3PT-based devices all perform more efficiently. Particularly, the P3PT:ZY-4Cl blend exhibits the highest efficiency (nearly 10%) among the six combinations and outperforms the prior top-performance system P3HT:ZY-4Cl. Furthermore, the blend films based on N2200 exhibit a high crack-onset strain of ∼38% on average, which is approximately 15 and 17 times higher than those of ZY-4Cl and PC71 BM, respectively. The microstructural origins for the above difference are well elucidated by detailed grazing incidence X-ray scattering and microscopy analysis. This work not only underlines the potential of P3PT in prolific solar cell research but also demonstrates the superior tensile properties of polythiophene-based all-polymer blends for the preparation of stretchable solar cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xuantong Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Mengyuan Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Zhaozhao Bi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Kaihu Xian
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Zhongxiang Peng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Qingchun Qi
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Saimeng Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China
| | - Jinsheng Song
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| |
Collapse
|
8
|
Liu Y, Xian K, Zhang X, Gao M, Shi Y, Zhou K, Deng Y, Hou J, Geng Y, Ye L. A Mixed-Ligand Strategy to Modulate P3HT Regioregularity for High-Efficiency Solar Cells. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China
| | - Kaihu Xian
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China
| | - Xuwen Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China
| | - Mengyuan Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China
| | - Yibo Shi
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China
| | - Kangkang Zhou
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China
| | - Yunfeng Deng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanhou Geng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|