1
|
Li L, Wang H, Shen X, Hang G, Gao Y, Hu J, Zheng S. Nanocomposites of Poly( n-Butyl Acrylate) with Fe 3O 4: Crosslinking with Hindered Urea Bonds, Reprocessing and Related Functional Properties. Polymers (Basel) 2024; 16:2638. [PMID: 39339102 PMCID: PMC11436229 DOI: 10.3390/polym16182638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
In this contribution, we reported the synthesis of the nanocomposites of poly(n-butyl acrylate) with Fe3O4 nanoparticles (NPs) via dynamic crosslinking of poly(n-butyl acrylate)-grafted Fe3O4 NPs with hindered urea bonds (HUBs). Towards this end, the surfaces of Fe3O4 NPs were grafted with poly(n-butyl acrylate-ran-2-(3-tert-butyl-3-ethylureido)ethyl acrylate) chains [denoted as Fe3O4-g-P(BA-r-TBEA)] via living radical polymerization. Thereafter, 1,2-bis(tert-butyl)ethylenediamine was used as a crosslinker to afford the organic-inorganic networks with variable contents of Fe3O4 NPs and crosslinking densities. It was found that the fine dispersion of Fe3O4 NPs in the matrix of poly(n-butyl acrylate) was achieved. The nanocomposites exhibited excellent reprocessing properties, attributed to the introduction of HUBs. Owing to the crosslinking, the nanocomposites displayed excellent shape memory properties. Further, the nanocomposites possessed photo- and magnetic-thermal properties, which were inherited from Fe3O4 NPs. These functional properties allow triggering the shape shifting of the nanocomposites in an uncontacted fashion.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sixun Zheng
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Zhang M, Mi M, Hu Z, Li L, Chen Z, Gao X, Liu D, Xu B, Liu Y. Polydopamine-Based Biomaterials in Orthopedic Therapeutics: Properties, Applications, and Future Perspectives. Drug Des Devel Ther 2024; 18:3765-3790. [PMID: 39219693 PMCID: PMC11363944 DOI: 10.2147/dddt.s473007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Polydopamine is a versatile and modifiable polymer, known for its excellent biocompatibility and adhesiveness. It can also be engineered into a variety of nanoparticles and biomaterials for drug delivery, functional modification, making it an excellent choice to enhance the prevention and treatment of orthopedic diseases. Currently, the application of polydopamine biomaterials in orthopedic disease prevention and treatment is in its early stages, despite some initial achievements. This article aims to review these applications to encourage further development of polydopamine for orthopedic therapeutic needs. We detail the properties of polydopamine and its biomaterial types, highlighting its superior performance in functional modification on nanoparticles and materials. Additionally, we also explore the challenges and future prospects in developing optimal polydopamine biomaterials for clinical use in orthopedic disease prevention and treatment.
Collapse
Affiliation(s)
- Min Zhang
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Man Mi
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zilong Hu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Lixian Li
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zhiping Chen
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Di Liu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Bilian Xu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Yanzhi Liu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| |
Collapse
|
3
|
Wu Z, Dong J, Guo H, Shang R, Qin X, Xia Y, Li X, Zhao X, Ji C, Zhang Q. Robust, Self-Healing, and Multi-Use Poly(Urethane-Urea-Imide) Elastomer as a Durable Adhesive for Thermal Interface Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401815. [PMID: 38573922 DOI: 10.1002/smll.202401815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/20/2024] [Indexed: 04/06/2024]
Abstract
Currently, research on thermal interface materials (TIMs) is primarily focused on enhancing thermal conductivity. However, strong adhesion and multifunctionality are also important characteristics for TIMs when pursing more stable interface heat conduction. Herein, a novel poly(urethane-urea-imide) (PUUI) elastomer containing abundant dynamic hydrogen bonds network and reversible disulfide linkages is successfully synthesized for application as a TIM matrix. The PUUI can self-adapt to the metal substrate surface at moderate temperatures (80 °C) and demonstrates a high adhesion strength of up to 7.39 MPa on aluminum substrates attributed its noncovalent interactions and strong intrinsic cohesion. Additionally, the PUUI displays efficient self-healing capability, which can restore 94% of its original mechanical properties after self-healing for 6 h at room temperature. Furthermore, PUUI composited with aluminum nitride and liquid metal hybrid fillers demonstrates a high thermal conductivity of 3.87 W m-1 K-1 while maintaining remarkable self-healing capability and adhesion. When used as an adhesive-type TIM, it achieves a low thermal contact resistance of 22.1 mm2 K W-1 at zero pressure, only 16.7% of that of commercial thermal pads. This study is expected to break the current research paradigm of TIMs and offers new insights for the development of advanced, reliable, and sustainable TIMs.
Collapse
Affiliation(s)
- Zhiqiang Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jie Dong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Han Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Rui Shang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiuzhi Qin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yanfei Xia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiuting Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xin Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Chengchang Ji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Qinghua Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
4
|
Chen Q, Huang W, Zhang L, Chen Y, Liu J. Impact of Sacrificial Hydrogen Bonds on the Structure and Properties of Rubber Materials: Insights from All-Atom Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11470-11480. [PMID: 38768447 DOI: 10.1021/acs.langmuir.4c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The inclusion of sacrificial hydrogen bonds is crucial for advancing high-performance rubber materials. However, the molecular mechanisms governing the impact of these bonds on material properties remain unclear, hindering progress in advanced rubber material research. This study employed all-atom molecular dynamics simulations to thoroughly investigate how hydrogen bonds affect the structure, dynamics, mechanics, and linear viscoelasticity of rubber materials. As the modified repeating unit ratio (β) increased, both interchain and intrachain hydrogen bond content rose, with interchain bonds playing a predominant role. This physical cross-linking network formed through interchain hydrogen bonds restricts molecular chain movement and relaxation and raises the glass transition temperature of rubber. Within a certain content of hydrogen bonds, the mechanical strength increases with increasing β. However, further increasing β leads to a subsequent decrease in the mechanical performance. Optimal mechanical properties were observed at β = 6%. On the other hand, a higher β value yields an elevated stress relaxation modulus and an extended stress relaxation plateau, signifying a more complex hydrogen-bond cross-linking network. Additionally, higher β increases the storage modulus, loss modulus, and complex viscosity while reducing the loss factor. In summary, this study successfully established the relationship between the structure and properties of natural rubber containing hydrogen bonds, providing a scientific foundation for the design of high-performance rubber materials.
Collapse
Affiliation(s)
- Qionghai Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Interdisciplinary Research Center for Artificial Intelligence, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Wanhui Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Interdisciplinary Research Center for Artificial Intelligence, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Interdisciplinary Research Center for Artificial Intelligence, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yulong Chen
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Interdisciplinary Research Center for Artificial Intelligence, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
5
|
Ma S, Zhou Y, Wang L, Zhang H. Multifunctional UV-NIR Dual Light-Responsive Soft Actuators from a Main-Chain Azobenzene Semi-Crystalline Poly(ester-amide) Doped with Polydopamine Nanoparticles. Chemistry 2024; 30:e202303306. [PMID: 37965800 DOI: 10.1002/chem.202303306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
The development of soft photoactuators with multifunctionality and improved performance is highly important for their broad applications. Herein, we report on a facile and efficient strategy for fabricating such photoactuators with UV-NIR dual light-responsivity, room-temperature 3D shape reprogrammability and reprocessability, and photothermal healability by doping polydopamine (PDA) nanoparticles into a main-chain azobenzene semi-crystalline poly(ester-amide) (PEA). The PEA/PDA nanoparticle composite was readily processed into free-standing films with enhanced mechanical and photomechanical properties compared with the blank PEA films. Its physically crosslinked uniaxially oriented films showed rapid and highly reversible photochemically induced bending/unbending under the UV/visible light irradiation at room temperature in both the air atmosphere and water. When exposed to the NIR light, they (and their bilayer films formed with a polyimide film) exhibited photothermally induced bending even at a temperature much lower than their crystalline-to-isotropic phase transition temperature based on a unique mechanism (involving photothermally induced polymer chain relaxation due to the disruption of their hydrogen bonds). The room-temperature 3D shape reprogrammability and reprocessability and photothermal healability of the composite polymer films were also demonstrated. Such multifunctional dual light-responsive photoactuators with well-balanced mechanical robustness, actuation stability, 3D shape reprogrammability/reprocessability and photothermal healability hold much promise in various photoactuating applications.
Collapse
Affiliation(s)
- Shengkui Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yan Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Huiqi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
6
|
Ou Y, Xing Y, Yang Z, Huang J, He J, Jiang F, Zhang Y. Strong and ultrafast stimulus-healable lignin-based composite elastomers with excellent adhesion properties. Int J Biol Macromol 2024; 256:128507. [PMID: 38040144 DOI: 10.1016/j.ijbiomac.2023.128507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
With the increased environmental issues, advanced high-performance and multifunctional polymeric materials derived from biomass have tremendous attention due to the great potential to replace their traditional petroleum-based counterparts. In this work, a series of lignin graft copolymers, lignin-graft-poly(n-butyl acrylate-co-acrylic acid) (Lig-g-P(BA-co-AA)), were rationally prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. These lignin-based copolymers demonstrate good thermal stability and tunable glass transition temperature (Tg) values. The mechanical performance, including tensile strength, extensibility, Young's modulus, and toughness can be facilely adjusted by the BA/AA feed ratio and lignin content during polymerization. Owing to the extraordinary photothermal conversion ability of lignin, the Lig-B550 copolymer, containing 11.8 wt% lignin content, shows excellent stimulus-healing behavior within 1 min with a 97.1 % healing efficiency under near-infrared (NIR) laser irradiation. Moreover, the Lig-g-P(BA-co-AA) copolymers exhibit remarkable adhesion property, broadening their potential applications in the adhesive area. This grafting strategy is versatile and efficient, conferring the resultant lignin-based composite elastomers with dramatically enhanced mechanical properties and unprecedented photothermal behavior, which can inspire the further development of strong lignin-based sustainable elastomers.
Collapse
Affiliation(s)
- Yangtao Ou
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yuxian Xing
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhiyuan Yang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jiajing Huang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Juan He
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Feng Jiang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Yaqiong Zhang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
7
|
Liu Y, Yang B, Song C, Zhao Q, Xie T, Fang Z, Wu J. Multishape Programming of Shape Memory Polymer Assemblies Fabricated by Vat Photopolymerization-Based 3D Printing and Interfacial Welding. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38037349 DOI: 10.1021/acsami.3c14140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The combination of three-dimensional (3D) printing and shape memory polymers (SMP) enables programmable shape morphing of complex 3D structures, which is commonly termed four-dimensional (4D) printing. The process requirements of vat photopolymerization-based 3D printing impose limitations on the molecular structure design of SMPs, making it challenging to achieve triple- or multiple-shaped memory effects. Herein, we printed SMPs with different Tg values and obtained an SMP assembly through interfacial welding. The welding process is facilitated by the dynamic exchange of hindered urethane bonds at the interface. The resulting SMP assembly exhibits a quadruple shape memory effect, enabling programmable sequential deformation. The advantage of this approach is that the molecular design and the corresponding thermodynamic properties of different welding SMP components can be independently adjusted, enabling a greater range of shape and functional variations in the final 3D SMP assembly.
Collapse
Affiliation(s)
- Yongqi Liu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Biru Yang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chuhan Song
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zizheng Fang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, No. 733, Jianshe San Road, Xiaoshan District, Hangzhou 311200, Zhejiang, China
| | - Jingjun Wu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
8
|
Li H, Zhang L, Zhang X, Zhu G, Zheng D, Luo S, Wu M, Li WH, Liu FQ. Self-Enhanced Antibacterial and Antifouling Behavior of Three-Dimensional Porous Cu 2O Nanoparticles Functionalized by an Organic-Inorganic Hybrid Matrix. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38808-38820. [PMID: 37526484 DOI: 10.1021/acsami.3c06905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Cu2O is currently an important protective material for domestic engineering and equipment used to exploit marine resources. Cu+ is considered to have more effective antibacterial and antifouling activities than Cu2+. However, disproportionation of Cu+ in the natural environment leads to its reduced bioavailability and weakened reactivity. Novel and functionalized Cu2O composites could enable efficient and environmentally friendly applications of Cu+. To this end, a series of three-dimensional porous Cu2O nanoparticles (3DNP-Cu2O) functionalized by organic (redox gel, R-Gel)-inorganic (reduced graphene oxide, rGO) hybrids─3DNP-Cu2O/rGOx@R-Gel─at room temperature by immobilization-reduction method was prepared and applied for protection against marine biofouling. 3DNP-Cu2O/rGO1.76@R-Gel includes rGO and R-Gel shape 3D porous Cu2O nanoparticles with diameters ∼177 nm and strong dispersion and antioxidant stability. Compared with commercial Cu2O (Cu2O-0), 3DNP-Cu2O/rGO1.76@R-Gel exhibited an ∼50% higher bactericidal rate, ∼96.22% higher water content, and ∼75% lower adhesion of mussels and barnacles. Moreover, 3DNP-Cu2O/rGOx@R-Gel maintains the same excellent, stable, and long-lasting bactericidal performance as Cu2O-0@R-Gel while reducing the average copper ion release concentration by ∼56 to 76%. This was also confirmed by X-ray diffraction, X-ray photoelectric spectroscopy (XPS), atomic absorption spectroscopy, and antifouling tests. In addition, XPS tests of rGO-Cu2+ and R-Gel-Cu2+, photocurrent tests of 3DNP-Cu2O/rGO1.76@R-Gel, and energy-dispersive spectrometry pictures of bacteria confirm that R-Gel and rGO act as electron donors and transfer substrates driving the reduction of Cu2+ (Cu2+ → Cu+) and the diffusion of Cu+. Thus, a self-growing antibacterial and antifouling system of 3DNP-Cu2O/rGO1.76@R-Gel was achieved. The mechanism of accelerated bacterial inactivation and resistance to mussel and barnacle adhesion by 3DNP-Cu2O/rGO1.76@R-Gel was interpreted. It is shown that rGO and R-Gel are important players in the antibacterial and antifouling system of 3DNP-Cu2O/rGO1.76@R-Gel.
Collapse
Affiliation(s)
- Huali Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Liuqin Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaohu Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Guangyu Zhu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Dongchen Zheng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Shuwen Luo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Min Wu
- Offshore Oil Production Plant of Sinopec Shengli Oilfield Company, Dongying 257237, China
| | - Wei-Hua Li
- School of Materials, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Fa-Qian Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
9
|
Yang L, Li L, Lu J, Lin B, Fu L, Xu C. Flexible Photothermal Materials with Controllable Accurate Healing and Reversible Adhesive Abilities. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Li Yang
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Luji Li
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Junjie Lu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Baofeng Lin
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Lihua Fu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Chuanhui Xu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| |
Collapse
|
10
|
Bonardd S, Nandi M, Hernández García JI, Maiti B, Abramov A, Díaz Díaz D. Self-Healing Polymeric Soft Actuators. Chem Rev 2023; 123:736-810. [PMID: 36542491 PMCID: PMC9881012 DOI: 10.1021/acs.chemrev.2c00418] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 12/24/2022]
Abstract
Natural evolution has provided multicellular organisms with sophisticated functionalities and repair mechanisms for surviving and preserve their functions after an injury and/or infection. In this context, biological systems have inspired material scientists over decades to design and fabricate both self-healing polymeric materials and soft actuators with remarkable performance. The latter are capable of modifying their shape in response to environmental changes, such as temperature, pH, light, electrical/magnetic field, chemical additives, etc. In this review, we focus on the fusion of both types of materials, affording new systems with the potential to revolutionize almost every aspect of our modern life, from healthcare to environmental remediation and energy. The integration of stimuli-triggered self-healing properties into polymeric soft actuators endow environmental friendliness, cost-saving, enhanced safety, and lifespan of functional materials. We discuss the details of the most remarkable examples of self-healing soft actuators that display a macroscopic movement under specific stimuli. The discussion includes key experimental data, potential limitations, and mechanistic insights. Finally, we include a general table providing at first glance information about the nature of the external stimuli, conditions for self-healing and actuation, key information about the driving forces behind both phenomena, and the most important features of the achieved movement.
Collapse
Affiliation(s)
- Sebastian Bonardd
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
| | - Mridula Nandi
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - José Ignacio Hernández García
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
| | - Binoy Maiti
- School
of Chemistry & Biochemistry, Georgia
Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United
States
| | - Alex Abramov
- Institute
of Organic Chemistry, University of Regensburg, Universitätstrasse 31, Regensburg 93053, Germany
| | - David Díaz Díaz
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Institute
of Organic Chemistry, University of Regensburg, Universitätstrasse 31, Regensburg 93053, Germany
| |
Collapse
|
11
|
Zhao C, Yue H, Huang M, He S, Liu H, Liu W, Zhu C, Jiang L. Thermal/Near-Infrared Light Dual-Responsive Reconfigurable and Recyclable Polythiourethane/CNT Composite with Simultaneously Enhanced Strength and Toughness. Macromol Rapid Commun 2022; 44:e2200806. [PMID: 36444920 DOI: 10.1002/marc.202200806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/11/2022] [Indexed: 12/03/2022]
Abstract
Thermoset polymers cross-linked by dynamic covalent bonds are recyclable and reconfigurable based on solid-state plasticity, resulting in less waste and environmental pollution. However, most thermoset polymers previously reported show thermal-responsive solid-state plasticity, depending much on external conditions and not allowing for local shape modulation. Here, the isocyanate modified carbon nanotubes (CNTs-NCO) are introduced into the polythiourethane (PCTU) network with multiple dynamic covalent bonds by in situ polymerization to prepare the composite with thermal/light dual-responsive solid-state plasticity, reconfigurability, and recyclability. The introduction of CNTs-NCO simultaneously strengthens and toughens the PCTU composite. Moreover, based on the photothermal properties and light-responsive solid-state plasticity, the PCTU/CNTs composite or bilayer sample could achieve complex permanent shape by locally precise shape regulation without affecting other parts. This work provides a simple and reliable method for preparing high-performance polymer composite with light-responsive solid-state plasticity, which may be applied in the fields of sensing and flexible electronics.
Collapse
Affiliation(s)
- Chunrui Zhao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Huimin Yue
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Miaoming Huang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Suqin He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China.,Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Hao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chengshen Zhu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Lei Jiang
- High &New Technology Research Center of Henan Academy of Sciences, Zhengzhou, 450002, P. R. China
| |
Collapse
|
12
|
Synergistic effect of multiple hydrogen bond and disulfide bond on self-healing waterborne conductive polyurethane composite. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|