1
|
Ataie S, Malmir A, Scott SS, Goettel JT, Clemens SN, Morrison DJ, Mackie C, Heyne B, Hatzikiriakos SG, Schafer LL. Hydroaminoalkylation for Amine Functionalization of Vinyl-Terminated Polyethylene Enables Direct Access to Responsive Functional Materials. Angew Chem Int Ed Engl 2024; 63:e202410154. [PMID: 39473397 DOI: 10.1002/anie.202410154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Indexed: 11/26/2024]
Abstract
While functionalized polyethylenes (PEs) exhibit valuable characteristics, the constraints of existing synthetic approaches limit the variety of readily incorporated functionality. New methods to generate functionalized PEs are required to afford new applications of this common material. We report 100 % atom economic tantalum-catalyzed hydroaminoalkylation of vinyl-terminated polyethylene (VTPE) as a method to produce amine-terminated PE. VTPEs with molecular weights between 2200-16800 g/mol are successfully aminated using solvent-free conditions. Our catalytic system is efficient for the installation of both aromatic and aliphatic amines, and can be carried out on multigram scale. The associating amine functional groups afford modified material properties, as measured by water contact angle, differential scanning calorimetry (DSC) and polymer rheology. The basic amine functionality offers the opportunity to convert inert PE into stimuli-responsive materials, such that the protonation of aminated PE affords the generation of functional antibacterial PE films.
Collapse
Affiliation(s)
- Saeed Ataie
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Amir Malmir
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Sabrina S Scott
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - James T Goettel
- Centre for Applied Research, NOVA Chemicals, Calgary, Alberta, T2E 7K7, Canada
| | - Steven N Clemens
- Centre for Applied Research, NOVA Chemicals, Calgary, Alberta, T2E 7K7, Canada
| | - Darryl J Morrison
- Centre for Applied Research, NOVA Chemicals, Calgary, Alberta, T2E 7K7, Canada
| | - Cyrus Mackie
- Department of Chemistry, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Belinda Heyne
- Department of Chemistry, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Savvas G Hatzikiriakos
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Laurel L Schafer
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
2
|
Wang Y, Li C, Tan C, Chen C. Integrated Ziegler-Natta/Brookhart-Ni Catalysts for the Synthesis of Sutured Polar High-Impact Polypropylenes. Angew Chem Int Ed Engl 2024:e202417849. [PMID: 39487628 DOI: 10.1002/anie.202417849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
The direct synthesis of polar high-impact polypropylenes using industrially-preferred heterogeneous catalysts is challenging due to the poisoning of polar functional groups towards metal center and the high stereo-selectivity requirement. In this work, dual-site catalysts combining Ziegler-Natta and Brookhart-Ni catalysts were used to produce polar polyolefin ionomers, followed by polar high-impact polypropylenes containing isotactic polypropylene and branched polyethylene as toughening agents. Three combination modes between these catalysts were investigated, including mixed, core-shell, and integrated types. The integrated dual-site catalyst achieved the optimal material properties because the polyolefin ionomer acted as a suture molecule that stitched different components into a whole network. This produced sutured polar high-impact polypropylenes with excellent mechanical properties and compatibility with polar substances. The restraining effect of the suture molecules greatly reduced the release of microplastic particles after aging. Moreover, the obtained polar high-impact polypropylene can serve as an efficient compatibilizer to recycle polyethylene/polypropylene mixed-waste plastics. This work provides an appealing and potentially practical strategy to upgrade the widely used polypropylenes and to alleviate the ever-growing plastic pollution issue.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei, 230601, China
| | - Chen Tan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei, 230601, China
| | - Changle Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Wei C, Guo L, Zhu C, Cui C. Boryloxy Titanium Complex-Enabled High Polar Monomer Contents in Catalytic Copolymerization of Olefins. Angew Chem Int Ed Engl 2024:e202414464. [PMID: 39189662 DOI: 10.1002/anie.202414464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
The preparation of polyolefins with high polar monomer contents (above 20 mol %) has long been a challenge. Half-titanocenes (Cp')[HCN(Ar)]2BOTiCl2 bearing bulky electron-donating N-heterocyclic boryloxy ligands have been designed and synthesized. The complexes (Cp*)[HCN(Ar)]2BOTiCl2 (2, Ar=2,6-iPr2C6H3; 5, Ar=2,4,6-Me3C6H2) supported by Cp* and the boryloxy ligands have been shown to efficiently catalyze the copolymerization of ethylene and long chain α-olefins. In particular, precatalyst 5 enabled the controlled synthesis of poly(ethylene-co-9-decen-1-ol) with unprecedented high polar monomer contents up to 32.1 mol % while maintaining the high catalytic activity. The structural analysis and DFT calculations disclosed that the bulky and strong electron-donating boryloxy ligands could effectively stabilize cationic active species. The mechanical studies on the hydroxyl-functionalized copolymers disclosed that they exhibited high strength and toughness because of the existence of hydrogen bonds in the polymer network.
Collapse
Affiliation(s)
- Chuanzhi Wei
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Lulu Guo
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Cheng Zhu
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of New Organic Matter, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
4
|
Ghana P, Xiong S, Tekpor A, Bailey BC, Spinney HA, Henderson BS, Agapie T. Catalyst Editing via Post-Synthetic Functionalization by Phosphonium Generation and Anion Exchange for Nickel-Catalyzed Ethylene/Acrylate Copolymerization. J Am Chem Soc 2024; 146:18797-18803. [PMID: 38967615 PMCID: PMC11258788 DOI: 10.1021/jacs.4c03416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Rapid, efficient development of homogeneous catalysts featuring desired performance is critical to numerous catalytic transformations but remains a key challenge. Typically, this task relies heavily on ligand design that is often based on trial and error. Herein, we demonstrate a "catalyst editing" strategy in Ni-catalyzed ethylene/acrylate copolymerization. Specifically, alkylation of a pendant phosphine followed by anion exchange provides a high yield strategy for a large number of cationic Ni phosphonium catalysts with varying electronic and steric profiles. These catalysts are highly active in ethylene/acrylate copolymerization, and their behaviors are correlated with the electrophile and the anion used in late-stage functionalization.
Collapse
Affiliation(s)
- Priyabrata Ghana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Shuoyan Xiong
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Adjeoda Tekpor
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Brad C. Bailey
- Chemical
Science, Core R&D, The Dow Chemical
Company, Midland, Michigan 48667, United States
| | - Heather A. Spinney
- Chemical
Science, Core R&D, The Dow Chemical
Company, Midland, Michigan 48667, United States
| | - Briana S. Henderson
- Chemical
Science, Core R&D, The Dow Chemical
Company, Midland, Michigan 48667, United States
| | - Theodor Agapie
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Wang Y, Lai J, Gao R, Gou Q, Li B, Zheng G, Zhang R, Yue Q, Song Z, Guo Z. Recent Advances in Nickel Catalysts with Industrial Exploitability for Copolymerization of Ethylene with Polar Monomers. Polymers (Basel) 2024; 16:1676. [PMID: 38932025 PMCID: PMC11207433 DOI: 10.3390/polym16121676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
The direct copolymerization of ethylene with polar monomers to produce functional polyolefins continues to be highly appealing due to its simple operation process and controllable product microstructure. Low-cost nickel catalysts have been extensively utilized in academia for the synthesis of polar polyethylenes. However, the development of high-temperature copolymerization catalysts suitable for industrial production conditions remains a significant challenge. Classified by the resultant copolymers, this review provides a comprehensive summary of the research progress in nickel complex catalyzed ethylene-polar monomer copolymerization at elevated temperatures in the past five years. The polymerization results of ethylene-methyl acrylate copolymers, ethylene-tert-butyl acrylate copolymers, ethylene-other fundamental polar monomer copolymers, and ethylene-special polar monomer copolymers are thoroughly summarized. The involved nickel catalysts include the phosphine-phenolate type, bisphosphine-monoxide type, phosphine-carbonyl type, phosphine-benzenamine type, and the phosphine-enolate type. The effective modulation of catalytic activity, molecular weight, molecular weight distribution, melting point, and polar monomer incorporation ratio by these catalysts is concluded and discussed. It reveals that the optimization of the catalyst system is mainly achieved through the methods of catalyst structure rational design, extra additive introduction, and single-site catalyst heterogenization. As a result, some outstanding catalysts are capable of producing polar polyethylenes that closely resemble commercial products. To achieve industrialization, it is essential to further emphasize the fundamental science of high-temperature copolymerization systems and the application performance of resultant polar polyethylenes.
Collapse
Affiliation(s)
- Ying Wang
- Department of Polyethylene, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China; (J.L.); (R.G.); (Q.G.); (B.L.); (G.Z.); (R.Z.); (Q.Y.); (Z.S.)
| | | | | | | | | | | | | | | | | | - Zifang Guo
- Department of Polyethylene, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China; (J.L.); (R.G.); (Q.G.); (B.L.); (G.Z.); (R.Z.); (Q.Y.); (Z.S.)
| |
Collapse
|
6
|
Wang Y, Wang Q, Tan C, Chen C. Synthesis of Polar-functionalized Isotactic Polypropylenes Using Commercial Heterogeneous Ziegler-Natta Catalyst. J Am Chem Soc 2024; 146:6837-6845. [PMID: 38426800 DOI: 10.1021/jacs.3c13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The efficient synthesis of polar-functionalized polypropylenes with high molecular weight and high stereoregularity represents a challenging task. This challenge becomes even more daunting when pursuing an industrially preferred heterogeneous process. This study demonstrated the realization of these goals through the use of commercial heterogeneous Ziegler-Natta catalysts in the copolymerization of propylene with ionic cluster polar monomers. The results revealed high copolymerization activity (∼1.1 × 107 g mol-1 h-1), moderate polar monomer incorporation ratios (∼4.9 mol %), high copolymer molecular weight (Mw > 105 g mol-1), high stereoregularity ([mmmm] ∼ 96%), and high melting temperature range (150-162 °C). The utilization of ionic cluster polar monomers improved the thermal stability as well as stereoselectivity of the catalyst. Moreover, the Ziegler-Natta catalyst can homopolymerize ionic cluster polar monomers with high activities (>104 g mol-1 h-1). The resulting polar-functionalized isotactic polypropylenes (iPP) exhibited superior tensile strength, impact strength, creep resistance, transparency, and crystallinity compared with nonpolar iPP. This enhancement was attributable to the dual roles of the ionic cluster polar monomer unit, serving as both a transparent nucleating agent and a dynamic cross-linking functionality. Furthermore, the polar-functionalized iPP exhibited improved compatibility with polar materials, offering benefits for applications in composites, recycling of mixed plastic wastes, 3D printing, and other fields. This study offered a comprehensive solution for the future industrial production of polar-functionalized iPP via copolymerization, bridging the gap between an efficient and practical copolymerization process from a synthetic chemistry perspective and enhanced material properties from an application perspective.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Quan Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chen Tan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, China
| | - Changle Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Qu W, Bi Z, Zou C, Chen C. Light, Heat, and Force-Responsive Polyolefins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307568. [PMID: 38183385 PMCID: PMC10953547 DOI: 10.1002/advs.202307568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Indexed: 01/08/2024]
Abstract
Stimuli-responsive polymers have found applications as shape-memory materials, optical switches, and sensors, but the installation of these responsive properties in non-polar and inert polyolefins is challenging. In this contribution, a series of spiropyran (SP)-based comonomers are synthesized and copolymerized with ethylene or ethylene/cyclic monomers. In addition to great mechanical and surface properties, these functionalized polyolefins responded to light, heat, and force, which induced changes in the polymer structure to transmit color or mechanical signals. These interesting responsive properties are also installed in a series of commercial polyolefin materials through reactive extrusion, making the scalable production of these materials possible.
Collapse
Affiliation(s)
- Weicheng Qu
- Key Laboratory of Precision and Intelligent ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Zhengxing Bi
- Key Laboratory of Precision and Intelligent ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Chen Zou
- Key Laboratory of Precision and Intelligent ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Changle Chen
- Key Laboratory of Precision and Intelligent ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| |
Collapse
|
8
|
Wan J, Dan Y, Huang Y, Jiang L. Achieving high molecular weight alternating copolymers of 1-octene with methyl acrylate via Lewis acid catalyzed copolymerization. RSC Adv 2024; 14:6374-6384. [PMID: 38380238 PMCID: PMC10877320 DOI: 10.1039/d4ra00165f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
The radical (co)polymerization of long-chain α-olefins (C4+) to produce high molecular weight (Mw) polymers is of great importance. However, this process is currently faced with significant challenges due to the presence of less reactive allylic radicals during radical (co)polymerization, leading to oligomers or polymers with extremely low Mw (less than 1 × 104 g mol-1). Using copolymerization of 1-octene with methyl acrylate (MA) as a proof-of-concept for addressing this challenge, we present a feasible method for synthesizing high Mw α-olefin copolymers via scandium trifluoromethanesulfonate (Sc(OTf)3)-mediated radical copolymerization. In this case, copolymers of 1-octene and MA (poly(1-octene-alt-MA)) with a Mw exceeding 3 × 104 g mol-1 were successfully synthesized in the presence of Sc(OTf)3. Meanwhile, the presence of alternating 1-octene-MA sequential structures was observed. To further enhance the Mw of poly(1-octene-alt-MA), a difunctional comonomer, 1,7-octadiene, was introduced to copolymerize with 1-octene and MA. The results indicate that the incorporation of difunctional comonomer leads to a significant increase in the Mw of the copolymers synthesized. The addition of 1 mol% of 1,7-octadiene resulted in a copolymer with a remarkably high Mw of up to 13.45 × 104 g mol-1 while still maintaining a high degree of the alternating 1-octene-MA sequence (41%). The influence of polymerization parameters on the molecular weight were also investigated. Increasing the monomer concentration, reducing the dosage of initiator, and lowering the polymerization temperature have been found to be advantageous in enhancing the molecular weight. This approach has also been successfully applied to the synthesis of high molecular weight alternating copolymers of other long-chain α-olefins, including 1-hexene, 1-decene and 1-tetradecane, with methyl acrylate. In summary, this study provides a feasible method for converting "less activated" α-olefins into high Mw olefin copolymers. This approach holds significant potential for the production of value-added polyolefins, thus offering promising prospects for future applications.
Collapse
Affiliation(s)
- Jiefan Wan
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University Chengdu 610065 China
| | - Yi Dan
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University Chengdu 610065 China
| | - Yun Huang
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University Chengdu 610065 China
| | - Long Jiang
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University Chengdu 610065 China
| |
Collapse
|
9
|
Xiong S, Hong A, Ghana P, Bailey BC, Spinney HA, Bailey H, Henderson BS, Marshall S, Agapie T. Acrylate-Induced β-H Elimination in Coordination Insertion Copolymerizaton Catalyzed by Nickel. J Am Chem Soc 2023; 145:26463-26471. [PMID: 37992227 DOI: 10.1021/jacs.3c10800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Polar monomer-induced β-H elimination is a key elementary step in polar polyolefin synthesis by coordination polymerization but remains underexplored. Herein, we show that a bulky neutral Ni catalyst, 1Ph, is not only a high-performance catalyst in ethylene/acrylate copolymerization (activity up to ∼37,000 kg/(mol·h) at 130 °C in a batch reactor, mol % tBA ∼ 0.3) but also a suitable platform for investigation of acrylate-induced β-H elimination. 4Ph-tBu, a novel Ni alkyl complex generated after acrylate-induced β-H elimination and subsequent acrylate insertion, was identified and characterized by crystallography. A combination of catalysis and mechanistic studies reveals effects of the acrylate monomer, bidentate ligand, and the labile ligand (e.g., pyridine) on the kinetics of β-H elimination, the role of β-H elimination in copolymerization catalysis as a chain-termination pathway, and its potential in controlling the polymer microstructure in polar polyolefin synthesis.
Collapse
Affiliation(s)
- Shuoyan Xiong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Alexandria Hong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Priyabrata Ghana
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Brad C Bailey
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - Heather A Spinney
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - Hannah Bailey
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - Briana S Henderson
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - Steve Marshall
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, Michigan 48667, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
10
|
Mehmood A, Mahmood A, AlMasoud N, Hassan A, Alomar TS, El-Bahy ZM, Raza N, Tian X, Ullah N. Mechanistic Study on Steric Activity Interplay of Olefin/Polar Monomers for Industrially Selective Late Transition Metal Catalytic Reactions. Molecules 2023; 28:7148. [PMID: 37894627 PMCID: PMC10609194 DOI: 10.3390/molecules28207148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
A significant issue in developing metal-catalyzed plastic polymer materials is obtaining distinctive catalytic characteristics to compete with current plastics in industrial commodities. We performed first-principle DFT calculations on the key insertion steps for industrially important monomers, vinyl fluoride (VF) and 3,3,3-trifluoropropene (TFP), to explain how the ligand substitution patterns affect the complex's polymerization behaviors. Our results indicate that the favorable 2,1-insertion of TFP is caused by less deformation in the catalyst moiety of the complexes in contrast to the 1,2-insertion mode. In contrast to the VF monomer, the additional interaction between the fluorine atoms of 3,3,3-trifluoropropene and the carbons of the catalyst ligands also contributed to favor the 2,1-insertion. It was found that the regioselectivity of the monomer was predominated by the progressive alteration of the catalytic geometry caused by small dihedral angles that were developed after the ligand-monomer interaction. Based on the distribution of the 1,2- and 2,1-insertion products, the activity and selectivity were influenced by the steric environment surrounding the palladium center; thus, an increased steric bulk visibly improved the selectivity of the bulkier polar monomer (TFP) during the copolymerization mechanism. In contrast, better activity was maintained through a sterically less hindered Pd metal center; the calculated moderate energy barriers showed that a catalyst with less steric hindrance might provide an opportunity for a wide range of prospective industrial applications.
Collapse
Affiliation(s)
- Andleeb Mehmood
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518000, China
| | - Ayyaz Mahmood
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518000, China
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Arzoo Hassan
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518000, China
| | - Taghrid S. Alomar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Zeinhom M. El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Nadeem Raza
- Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Xiaoqing Tian
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518000, China
| | - Naeem Ullah
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
11
|
Shi JX, Ciccia NR, Pal S, Kim DD, Brunn JN, Lizandara-Pueyo C, Ernst M, Haydl AM, Messersmith PB, Helms BA, Hartwig JF. Chemical Modification of Oxidized Polyethylene Enables Access to Functional Polyethylenes with Greater Reuse. J Am Chem Soc 2023; 145:21527-21537. [PMID: 37733607 DOI: 10.1021/jacs.3c07186] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Polyethylene is a commodity material that is widely used because of its low cost and valuable properties. However, the lack of functional groups in polyethylene limits its use in applications that include adhesives, gas barriers, and plastic blends. The inertness of polyethylene makes it difficult to install groups that would enhance its properties and enable programmed chemical decomposition. To overcome these deficiencies, the installation of pendent functional groups that imbue polyethylene with enhanced properties is an attractive strategy to overcome its inherent limitations. Here, we describe strategies to derivatize oxidized polyethylene that contains both ketones and alcohols to monofunctional variants with bulk properties superior to those of unmodified polyethylene. Iridium-catalyzed transfer dehydrogenation with acetone furnished polyethylenes with only ketones, and ruthenium-catalyzed hydrogenation with hydrogen furnished polyethylenes with only alcohols. We demonstrate that the ratio of these functional groups can be controlled by reduction with stoichiometric hydride-containing reagents. The ketones and alcohols serve as sites to introduce esters and oximes onto the polymer, thereby improving surface and bulk properties over those of polyethylene. These esters and oximes were removed by hydrolysis to regenerate the original oxygenated polyethylenes, showing how functionalization can lead to materials with circularity. Waste polyethylenes were equally amenable to oxidative functionalization and derivatization of the oxidized material, showing that this low- or negative-value feedstock can be used to prepare materials of higher value. Finally, the derivatized polymers with distinct solubilities were separated from mechanically mixed plastic blends by selective dissolution, demonstrating that functionalization can lead to novel approaches for distinguishing and separating polymers from a mixture.
Collapse
Affiliation(s)
- Jake X Shi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nicodemo R Ciccia
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Subhajit Pal
- Department of Materials Science and Bioengineering, University of California, Berkeley, California 94720, United States
| | - Diane D Kim
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John N Brunn
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | | | | | | | - Phillip B Messersmith
- Department of Materials Science and Bioengineering, University of California, Berkeley, California 94720, United States
| | - Brett A Helms
- The Molecular Foundry and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
12
|
Ciccia NR, Shi JX, Pal S, Hua M, Malollari KG, Lizandara-Pueyo C, Risto E, Ernst M, Helms BA, Messersmith PB, Hartwig JF. Diverse functional polyethylenes by catalytic amination. Science 2023; 381:1433-1440. [PMID: 37769088 DOI: 10.1126/science.adg6093] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023]
Abstract
Functional polyethylenes possess valuable bulk and surface properties, but the limits of current synthetic methods narrow the range of accessible materials and prevent many envisioned applications. Instead, these materials are often used in composite films that are challenging to recycle. We report a Cu-catalyzed amination of polyethylenes to form mono- and bifunctional materials containing a series of polar groups and substituents. Designed catalysts with hydrophobic moieties enable the amination of linear and branched polyethylenes without chain scission or cross-linking, leading to polyethylenes with otherwise inaccessible combinations of functional groups and architectures. The resulting materials possess tunable bulk and surface properties, including toughness, adhesion to metal, paintability, and water solubility, which could unlock applications for functional polyethylenes and reduce the need for complex composites.
Collapse
Affiliation(s)
- Nicodemo R Ciccia
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jake X Shi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Subhajit Pal
- Departments of Materials Science and Engineering and Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mutian Hua
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Katerina G Malollari
- Departments of Materials Science and Engineering and Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Eugen Risto
- BASF SE, 67056 Ludwigshafen am Rhein, Germany
| | | | - Brett A Helms
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Phillip B Messersmith
- Departments of Materials Science and Engineering and Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
13
|
Wang C, Xia J, Zhang Y, Hu X, Jian Z. Photodegradable polar-functionalized polyethylenes. Natl Sci Rev 2023; 10:nwad039. [PMID: 37600561 PMCID: PMC10434297 DOI: 10.1093/nsr/nwad039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/06/2022] [Accepted: 02/02/2023] [Indexed: 08/22/2023] Open
Abstract
The degradation of plastics has attracted much attention from the global community. Polyethylenes (PEs), as the most abundant synthetic plastics, are most frequently studied. PE is non-degradable and non-polar because of the sole presence of the pure hydrocarbon components. Concurrent incorporation of both in-chain cleavable and functional groups into the PE chain is an effective pathway to overcome the non-degradable and non-polar issue; however, the method for achieving this pathway remains elusive. Here, we report a strictly non-alternating (>99%) terpolymerization of ethylene with CO and fundamental polar monomers via a coordination-insertion mechanism using late transition metal catalysts, which effectively prevents the formation of undesired chelates originating from both co-monomers under a low CO concentration. High-molecular-weight linear PEs with both in-chain isolated keto (>99%) and main-chain functional groups are prepared. The incorporation of key low-content isolated keto groups makes PEs photodegradable while retaining their desirable bulk material properties, and the introduction of polar functional groups considerably improves their surface properties.
Collapse
Affiliation(s)
- Chaoqun Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, Universityof Science and Technology of China, Hefei 230026, China
| | - Jian Xia
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yuxing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, Universityof Science and Technology of China, Hefei 230026, China
| | - Xiaoqiang Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, Universityof Science and Technology of China, Hefei 230026, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, Universityof Science and Technology of China, Hefei 230026, China
| |
Collapse
|
14
|
Pawlak M, Drzeżdżon J, Jacewicz D. The greener side of polymers in the light of d-block metal complexes as precatalysts. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
15
|
Xiong S, Ghana P, Bailey BC, Spinney HA, Henderson BS, Espinosa MR, Agapie T. Impact of Labile Ligands on Catalyst Initiation and Chain Propagation in Ni-Catalyzed Ethylene/Acrylate Copolymerization. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
16
|
Wang YB, Nan C, Zhuo W, Zou C, Jiang H, Hao XQ, Chen C, Song MP. Amine-Imine Nickel Catalysts with Pendant O-Donor Groups for Ethylene (Co)Polymerization. Inorg Chem 2023; 62:5105-5113. [PMID: 36933227 DOI: 10.1021/acs.inorgchem.2c04240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
The introduction of a secondary interaction is an efficient strategy to modulate transition-metal-catalyzed ethylene (co)polymerization. In this contribution, O-donor groups were suspended on amine-imine ligands to synthesize a series of nickel complexes. By adjusting the interaction between the nickel metal center and the O-donor group on the ligands, these nickel complexes exhibited high activities for ethylene polymerization (up to 3.48 × 106 gPE·molNi-1·h-1) with high molecular weight up to 5.59 × 105 g·mol-1 and produced good polyethylene elastomers (strain recovery (SR) = 69-81%). In addition, these nickel complexes can catalyze the copolymerization of ethylene with vinyl acetic acid, 6-chloro-1-hexene, 10-undecylenic, 10-undecenoic acid, and 10-undecylenic alcohol to prepare the functionalized polyolefins.
Collapse
Affiliation(s)
- Yan-Bing Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Chenlong Nan
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Weize Zhuo
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Chen Zou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hui Jiang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
17
|
Shiraki Y, Saito M, Yamada NL, Ito K, Yokoyama H. Adhesion to Untreated Polyethylene and Polypropylene by Needle-like Polyolefin Crystals. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Yoshihiko Shiraki
- Polyurethane Research Laboratory, Tosoh Corporation, 1-8, Kasumi, Yokkaichi, Mie 510-8540, Japan
- Department of Advanced Materials Science, School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 227-8561, Japan
| | - Masayuki Saito
- Department of Advanced Materials Science, School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 227-8561, Japan
| | - Norifumi L. Yamada
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Ibaraki 305-0801, Japan
| | - Kohzo Ito
- Department of Advanced Materials Science, School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 227-8561, Japan
| | - Hideaki Yokoyama
- Department of Advanced Materials Science, School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 227-8561, Japan
| |
Collapse
|
18
|
Peng D, Xu M, Tan C, Chen C. Emulsion Polymerization Strategy for Heterogenization of Olefin Polymerization Catalysts. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Dan Peng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Menghe Xu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chen Tan
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
19
|
Sharma B, Verma A, Saini S, Kumar U. Tris[(3-salicylideneimino)ethyl]amine an effective ATRP ligand for the copolymerization of n-butyl acrylate and 1-octene. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
20
|
Zong Y, Wang C, Zhang Y, Jian Z. Polar-Functionalized Polyethylenes Enabled by Palladium-Catalyzed Copolymerization of Ethylene and Butadiene/Bio-Based Alcohol-Derived Monomers. Polymers (Basel) 2023; 15:1044. [PMID: 36850326 PMCID: PMC9967981 DOI: 10.3390/polym15041044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/22/2023] Open
Abstract
Polar-functionalized polyolefins are high-value materials with improved properties. However, their feedstocks generally come from non-renewable fossil products; thus, it requires the development of renewable bio-based monomers to produce functionalized polyolefins. In this contribution, via the Pd-catalyzed telomerization of 1,3-butadiene and three types of bio-based alcohols (furfuryl alcohol, tetrahydrofurfuryl alcohol, and solketal), 2,7-octadienyl ether monomers including OC8-FUR, OC8-THF, and OC8-SOL were synthesized and characterized, respectively. The copolymerization of these monomers with ethylene catalyzed by phosphine-sulfonate palladium catalysts was further investigated. Microstructures of the resultant copolymers were analyzed by NMR and ATR-IR spectroscopy, revealing linear structures with incorporations of difunctionalized side chains bearing both allyl ether units and polar cyclic groups. Mechanical property studies exhibited better strain-at-break of these copolymers compared to the non-polar polyethylene, among which the copolymer E-FUR with the incorporation of 0.3 mol% displayed the highest strain-at-break and stress-at-break values of 940% and 35.9 MPa, respectively.
Collapse
Affiliation(s)
- Yanlin Zong
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chaoqun Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yixin Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
21
|
Xu M, Chen A, Li W, Li Y, Zou C, Chen C. Efficient Synthesis of Polar Functionalized Polyolefins with High Biomass Content. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Menghe Xu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ao Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wu Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yougui Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chen Zou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
22
|
Li K, Cui L, Zhang Y, Jian Z. Amide-Functionalized Polyolefins and Facile Post-Transformations. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kangkang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Lei Cui
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yixin Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
23
|
A Multifunctional Biomass Zinc Catalyst for Epoxy-Based Vitrimers and Composites. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
24
|
Zheng H, Pei L, Deng H, Gao H, Gao H. Electronic effects of amine-imine nickel and palladium catalysts on ethylene (co)polymerization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
‘Catalyst + X’ strategies for transition metal-catalyzed olefin-polar monomer copolymerization. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Bodkhe DV, Chikkali SH. Ti-Iminocarboxylate Catalyzed Polymerization of Ethylene to Highly Crystalline, Disentangled, Ultrahigh Molecular Weight Polyethylene. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Ji M, Si G, Pan Y, Tan C, Chen M. Polymeric α-diimine palladium catalysts for olefin (co)polymerization. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
28
|
Mechanical reinforcement of isoprene rubbers via metal-coordinated crosslink of carboxyl-terminated telechelic polymers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Zhang R, Gao R, Gou Q, Lai J, Li X. Recent Advances in the Copolymerization of Ethylene with Polar Comonomers by Nickel Catalysts. Polymers (Basel) 2022; 14:3809. [PMID: 36145954 PMCID: PMC9500745 DOI: 10.3390/polym14183809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
The less-expensive and earth-abundant nickel catalyst is highly promising in the copolymerization of ethylene with polar monomers and has thus attracted increasing attention in both industry and academia. Herein, we have summarized the recent advancements made in the state-of-the-art nickel catalysts with different types of ligands for ethylene copolymerization and how these modifications influence the catalyst performance, as well as new polymerization modulation strategies. With regard to α-diimine, salicylaldimine/ketoiminato, phosphino-phenolate, phosphine-sulfonate, bisphospnine monoxide, N-heterocyclic carbene and other unclassified chelates, the properties of each catalyst and fine modulation of key copolymerization parameters (activity, molecular weight, comonomer incorporation rate, etc.) are revealed in detail. Despite significant achievements, many opportunities and possibilities are yet to be fully addressed, and a brief outlook on the future development and long-standing challenges is provided.
Collapse
Affiliation(s)
- Randi Zhang
- Department of Polyethylene, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | | | | | | | | |
Collapse
|
30
|
Synthesis of Ultra-High molecular weight polyethylene elastomers by para-tert-Butyl dibenzhydryl functionalized α-Diimine nickel catalysts at elevated temperature. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Xiong S, Hong A, Bailey BC, Spinney HA, Senecal TD, Bailey H, Agapie T. Highly Active and Thermally Robust Nickel Enolate Catalysts for the Synthesis of Ethylene-Acrylate Copolymers. Angew Chem Int Ed Engl 2022; 61:e202206637. [PMID: 35723944 DOI: 10.1002/anie.202206637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 11/05/2022]
Abstract
The insertion copolymerization of polar olefins and ethylene remains a significant challenge in part due to catalysts' low activity and poor thermal stability. Herein we demonstrate a strategy toward addressing these obstacles through ligand design. Neutral nickel phosphine enolate catalysts with large phosphine substituents reaching the axial positions of Ni achieve activity of up to 7.7×103 kg mol-1 h-1 (efficiency >35×103 g copolymer/g Ni) at 110 °C, notable for ethylene/acrylate copolymerization. NMR analysis of resulting copolymers reveals highly linear microstructures with main-chain ester functionality. Structure-performance studies indicate a strong correlation between axial steric hindrance and catalyst performance.
Collapse
Affiliation(s)
- Shuoyan Xiong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexandria Hong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Brad C Bailey
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, MI 48667, USA
| | - Heather A Spinney
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, MI 48667, USA
| | - Todd D Senecal
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, MI 48667, USA
| | - Hannah Bailey
- Chemical Science, Core R&D, The Dow Chemical Company, Midland, MI 48667, USA
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
32
|
Late Transition Metal Catalysts with Chelating Amines for Olefin Polymerization. Catalysts 2022. [DOI: 10.3390/catal12090936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Polyolefins are the most consumed polymeric materials extensively used in our daily life and are usually generated by coordination polymerization in the polyolefin industry. Olefin polymerization catalysts containing transition metal–organic compound combinations are undoubtedly crucial for the development of the polyolefin industry. The nitrogen donor atom has attracted considerable interest and is widely used in combination with the transition metal for the fine-tuning of the chemical environment around the metal center. In addition to widely reported olefin polymerization catalysts with imine and amide donors (sp2 hybrid N), late transition metal catalysts with chelating amine donors (sp3 hybrid N) for olefin polymerization have never been reviewed. In this review paper, we focus on late transition metal (Ni, Pd, Fe, and Co) catalysts with chelating amines for olefin polymerization. A variety of late transition metal catalysts bearing different neutral amine donors are surveyed for olefin polymerization, including amine–imine, amine–pyridine, α-diamine, and [N, N, N] tridentate ligands with amine donors. The relationship between catalyst structure and catalytic performance is also encompassed. This review aims to promote the design of late transition metal catalysts with unique chelating amine donors for the development of high-performance polyolefin materials.
Collapse
|
33
|
Balzade Z, Sharif F, Ghaffarian Anbaran SR. Tailor-Made Functional Polyolefins of Complex Architectures: Recent Advances, Applications, and Prospects. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zahra Balzade
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 158754413, Iran
| | - Farhad Sharif
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 158754413, Iran
| | | |
Collapse
|
34
|
Chae CG, Park JW, Ho LNT, Kim MJ, Kim EC, Lee W, Park S, Kim DG, Jung HM, Kim YS. Bis(β-ketoimino)nickel(II) Complexes for Random Copolymerization of Norbornene and Methyl 5-Norbornene-2-carboxylate with Controlled Ester Group Incorporation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chang-Geun Chae
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Jun Woo Park
- Department of Applied Chemistry and Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Linh N. T. Ho
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Department of Applied Chemistry and Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Myung-Jin Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Eun Chae Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Woohwa Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Sungmin Park
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Dong-Gyun Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Advanced Materials and Chemical Engineering, KRICT School, University of Science and Technology, Daejeon 34114, Republic of Korea
| | - Hyun Min Jung
- Department of Applied Chemistry and Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Yong Seok Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Advanced Materials and Chemical Engineering, KRICT School, University of Science and Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
35
|
Zhang H, Zhang Z, Cai Z, Li M, Liu Z. Influence of Silica-Supported Alkylaluminum on Heterogeneous Zwitterionic Anilinonaphthoquinone Nickel and Palladium-Catalyzed Ethylene Polymerization and Copolymerization with Polar Monomers. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hu Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zhaoyu Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zhengguo Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Mingyuan Li
- Department of Chemistry, Guangdong Technion Israel Institute of Technology, Shantou 515063, P. R. China
| | - Zhen Liu
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
36
|
Odenwald L, Wimmer FP, Mast NK, Schußmann MG, Wilhelm M, Mecking S. Molecularly Defined Polyolefin Vitrimers from Catalytic Insertion Polymerization. J Am Chem Soc 2022; 144:13226-13233. [PMID: 35838588 DOI: 10.1021/jacs.2c03778] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Vitrimers can combine the advantageous properties of cross-linked materials with thermoplastic processability. For the prominent case of polyethylene, established post-polymerization introduction of cross-linkable moieties results in extremely heterogeneous compositions of the chains. Here, we report the generation of functionalized polyethylenes directly by catalytic insertion polymerization, with incorporated cross-linkable aryl boronic esters or alternatively acetal-protected groups suited for cross-linking with difunctional boronic esters. In addition to the desired homogeneous in-chain distribution, the reactive cross-linkable groups are enriched at the chain ends. This enables the incorporation of all chains in the network, as also supported by simulations of all chains' compositions. The uniform molecular composition of the chains reflects in resulting vitrimers' material properties, particularly lack of leaching with solvents. At the same time, cross-linking is indeed fully reversible and the vitrimers can be recycled.
Collapse
Affiliation(s)
- Lukas Odenwald
- Chair of Chemical Materials Science, Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Florian P Wimmer
- Chair of Chemical Materials Science, Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Nina K Mast
- Chair of Chemical Materials Science, Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Max G Schußmann
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Manfred Wilhelm
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Stefan Mecking
- Chair of Chemical Materials Science, Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
37
|
Xiong S, Hong A, Bailey BC, Spinney HA, Senecal TD, Bailey H, Agapie T. Highly Active and Thermally Robust Nickel Enolate Catalysts for the Synthesis of Ethylene‐Acrylate Copolymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shuoyan Xiong
- California Institute of Technology Division of Chemistry and Chemical Engineering UNITED STATES
| | - Alexandria Hong
- California Institute of Technology Chemistry and Chemical Engineering UNITED STATES
| | | | | | | | | | - Theodor Agapie
- California Institute of Technology Chemistry 1200 California BlvdMC 127-72 91106 Pasadena UNITED STATES
| |
Collapse
|
38
|
Groch P, Białek M. Composition, hydrogen bonding and viscoelastic properties correlation for ethylene/α,ω-alkenol copolymers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Karimi M, Arabi H, Sadjadi S. New advances in olefin homo and copolymerization using neutral, single component palladium/nickel complexes ligated by a phosphine-sulfonate. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Ji M, Zheng S, Zou C, Chen M. Ruthenium-Catalyzed Diazoacetates/Cyclooctene Metathesis Copolymerization. Polym Chem 2022. [DOI: 10.1039/d2py00886f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a powerful synthetic tool, ruthenium-catalyzed ring-opening metathesis polymerization (ROMP) has been widely utilized to prepare diverse polymers. In this contribution, we demonstrated the polymerization of cyclooctene in the presence...
Collapse
|
41
|
Ma Z, Ji M, Pang W, Si G, Chen M. The synthesis and properties research of functionalized polyolefins. NEW J CHEM 2022. [DOI: 10.1039/d2nj04335a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work demonstrated a tandem ROMP/hydrogenation approach for the preparation of functionalized polyolefins and their properties were investigated.
Collapse
Affiliation(s)
- Zhanshan Ma
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Minghang Ji
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Wenmin Pang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Guifu Si
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Min Chen
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
42
|
Zhang Y, Jian Z. Polar additive triggered chain walking copolymerization of ethylene and fundamental polar monomers. Polym Chem 2022. [DOI: 10.1039/d2py00934j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of a polar additive efficiently triggers chain walking copolymerization of ethylene with a broad scope of fundamental polar monomers, which is long-sought in an α-diimine Pd(ii) system.
Collapse
Affiliation(s)
- Yuxing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|