1
|
Sun Y, Chen Q, Pan D, Xu X, Bai QH, Wang CH, Zeng X, Xiao X. Supramolecular phosphorescent assemblies based on cucurbit[8]uril and bromophenylpyridine derivatives for dazomet recognition. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125695. [PMID: 39778394 DOI: 10.1016/j.saa.2025.125695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/14/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025]
Abstract
A bromophenylpyridine derivative (N1) was designed, synthesized, and the molecule was incorporated into the cavity of the cucurbit[8]uril (Q[8]) as a guest to form a 2:1 host-guest complex. This complex demonstrates good room temperature phosphorescence (RTP) properties in aqueous solution. The host-guest interaction and optical properties of N1@Q[8] in aqueous solution were studied by means of 1H NMR, ultraviolet-visible absorption spectroscopy, fluorescence spectroscopy, phosphorescence spectroscopy, scanning electron microscopy and inverted fluorescence microscopy. The results show that the bromophenyl part of the guest molecule enters the cavity of Q[8], while the other part of N1 remains outside the cavity, resulting in a 2:1 supramolecular structure. This assembly exhibits specific recognition of dazomet on the phosphorescence spectrum with a detection limit of 8.8329 × 10-7 mol·L-1. Collectively, this finding opens up a new possibility for the potential application of room temperature phosphorescent materials in analytical detection.
Collapse
Affiliation(s)
- Yan Sun
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Qing Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China.
| | - Dingwu Pan
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China.
| | - Xueyang Xu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Qing-Hong Bai
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Cheng-Hui Wang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Xi Zeng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Yang XZ, Li GL, Xin Q, Niu KK, Liu H, Yu S, Xing LB. A Highly Efficient Supramolecular Polymer-Based Singlet Oxygen Generator for Photocatalytic Minisci Alkylation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19279-19286. [PMID: 39207173 DOI: 10.1021/acs.langmuir.4c02634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Supramolecular polymers, with their specific functional units and structures, can effectively enhance the absorption and utilization of light energy, thereby facilitating more efficient photocatalytic organic reactions. In the present work, we constructed a supramolecular polymer consisting of benzothiazole derivatives (BTBP) and cucurbit[8]uril (CB[8]). The BTBP monomer, known for its unique chemical structure and properties, has been found to exhibit a remarkable capability in generating singlet oxygen (1O2). As a result of the constraining impact of the macrocyclic molecule, the inclusion of CB[8] resulted in an effective enhancement in the ability to generate 1O2 while forming supramolecular polymer BTBP-CB[8]. When evaluating the quantum yield of 1O2 using Rose Bengal (RB) as a reference photosensitizer (75% in water), BTBP-CB[8] demonstrated an enhanced 1O2 quantum yield compared to BTBP, with an impressive yield of 152.4%, demonstrating that the formation of supramolecular polymer contributes to its ability to generate 1O2. Subsequently, BTBP-CB[8], a highly efficient 1O2 generator, was employed for the photocatalytic Minisci alkylation reaction, resulting in an impressive reaction yield of up to 89%. The supramolecular polymer strategies employed in the construction of photocatalytic systems have exhibited remarkable efficacy in the production of 1O2, underscoring their immense prospects in photocatalysis.
Collapse
Affiliation(s)
- Xuan-Zong Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Guang-Lu Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Qingqing Xin
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, P. R. China
| | - Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| |
Collapse
|
3
|
Shan PH, Pan DW, Li CR, Meng TH, Redshaw C, Tao Z, Xiao X. Selective detection of paraquat by a cucurbit[7]uril-based fluorescent probe. JOURNAL OF PESTICIDE SCIENCE 2024; 49:114-121. [PMID: 38882708 PMCID: PMC11176046 DOI: 10.1584/jpestics.d23-062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/21/2024] [Indexed: 06/18/2024]
Abstract
A simple fluorescent "on-off" system that can be utilized for the selective identification and determination of paraquat (PQ) is presented herein. 1H NMR spectroscopic data indicated that in aqueous solution the alkaloid palmatine can be partially encapsulated within the cucurbit[7]uril (Q[7]) cavity, whereby a stable 1 : 1 host-guest inclusion complex is formed. Other characterization techniques including mass spectrometry, UV-Vis and fluorescence spectroscopy also provided further evidence, and the host-guest inclusion complex was found to exhibit reasonable fluorescence intensity. It is noteworthy that the addition of PQ resulted in quenching the fluorescence of the host-guest inclusion complex, whereas the presence of 12 other pesticides did not significantly affect the fluorescence intensity. Given the linear relationship between the intensity of the fluorescence and the PQ concentration, the PQ concentration in aqueous solution was easily detected. Thus, a new method for identifying and determining the fluorescence quenching of PQ has been developed in this work.
Collapse
Affiliation(s)
- Pei-Hui Shan
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University
| | - Ding-Wu Pan
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University
| | - Chun-Rong Li
- Public Course Teaching Department, Qiannan Medical College for Nationalities
| | - Tie-Hong Meng
- Public Course Teaching Department, Qiannan Medical College for Nationalities
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University
| |
Collapse
|
4
|
Li Q, Yu Z, Redshaw C, Xiao X, Tao Z. Double-cavity cucurbiturils: synthesis, structures, properties, and applications. Chem Soc Rev 2024; 53:3536-3560. [PMID: 38414424 DOI: 10.1039/d3cs00961k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Double-cavity Q[n]s are relatively new members of the Q[n] family and have garnered significant interest due to their distinctive structures and novel properties. While they incorporate n glycoluril units, akin to their single-cavity counterparts, their geometry can best be described as resembling a figure-of-eight or a handcuff, distinguishing them from single-cavity Q[n]s. Despite retaining the core molecular recognition traits of single-cavity Q[n]s, these double-cavity variants introduce fascinating new attributes rooted in their distinct configurations. This overview delves into the synthesis, structural attributes, properties, and intriguing applications of double-cavity Q[n]s. Some of the applications explored include their role in supramolecular polymers, molecular machinery, supra-amphiphiles, sensors, artificial light-harvesting systems, and adsorptive separation materials. Upon concluding this review, we discuss potential challenges and avenues for future development and offer valuable insights for other scholars working in this area with the aim of stimulating further exploration and interest.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| | - Zhengwei Yu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull HU6 7RX, UK
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| |
Collapse
|
5
|
Cen R, Liu M, Lu JH, Tao Z, Xiao X. Construction of an Artificial Light-Harvesting System with Photocatalytic Activity Based on Nor- seco-cucurbit[10]uril in Aqueous Solution. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38425031 DOI: 10.1021/acsami.3c19359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
A supramolecular assembly was constructed based on the tetraphenylethylene derivatives (TPEs) and nor-seco-cucurbit[10]uril (ns-Q[10]). Upon introduction of the dye Rhodamine B (RB) into the TPEs@ns-Q[10] assembly, an energy transfer process can occur from the TPEs@ns-Q[10] assembly to RB. Moreover, after the addition of Nile Red (NiR), a two-step sequential energy transfer process from the TPEs@ns-Q[10] assembly to RB and then to NiR can occur. Additionally, the dye Eosin Y (ESY) was introduced into the TPEs@ns-Q[10] assembly and an energy transfer process can take place from the TPEs@ns-Q[10] assembly to ESY. To utilize the harvested energy from the TPEs@ns-Q[10]-RB-NiR and TPEs@ns-Q[10]-ESY system, we applied the TPEs@ns-Q[10] assembly-based light-harvesting systems (LHSs) as a catalyst for the advancement of the photocatalytic dehalogenation reaction in aqueous solution. When promoted with 0.5 mol % catalyst, the reaction yield reached 78 and 68%, demonstrating the promising potential of TPEs@ns-Q[10] assembly-based LHSs in the promotion of the photocatalytic dehalogenation reaction.
Collapse
Affiliation(s)
- Ran Cen
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Ming Liu
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Ji-Hong Lu
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Zhu Tao
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Wang H, Liu H, Wang M, Hou J, Li Y, Wang Y, Zhao Y. Cucurbituril-based supramolecular host-guest complexes: single-crystal structures and dual-state fluorescence enhancement. Chem Sci 2024; 15:458-465. [PMID: 38179534 PMCID: PMC10762720 DOI: 10.1039/d3sc04813f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Two supramolecular complexes were prepared using cucurbiturils [CBs] as mediators and a four-armed p-xylene derivative (M1) as a guest molecule. The single crystals of these two complexes were obtained and successfully analyzed by single-crystal X-ray diffraction (SCXRD). An unexpected and intriguing 1 : 2 self-assembly arrangement between M1 and CB[8] was notably uncovered, marking its first observation. These host-guest complexes exhibit distinctive photophysical properties, especially emission behaviors. Invaluable insights can be derived from these single-crystal structures. The precious single-crystal structures provide both precise structural information regarding the supramolecular complexes and a deeper understanding of the intricate mechanisms governing their photophysical properties.
Collapse
Affiliation(s)
- Hui Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
- College of Chemical Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Hui Liu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Mingsen Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Jiaheng Hou
- College of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Yongjun Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS. Key Laboratory of Organic Solids, Institute of Chemistry, Chinese. Academy of Sciences Beijing 100190 P. R. China
| | - Yuancheng Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| |
Collapse
|
7
|
Yang D, Luo Y, Wei Yuan S, Xia Chen L, Hua Ma P, Tao Z, Xiao X. A cucurbit[8]uril-based supramolecular polymer constructed outer surface interactions: use as a sensor, in cellular imaging and beyond. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
8
|
Hazarika B, Singh VP. Macrocyclic supramolecular biomaterials in anti-cancer therapeutics. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
9
|
Gao ZZ, Shen L, Hu YL, Sun JF, Wei G, Zhao H. Supramolecular Crystal Networks Constructed from Cucurbit[8]uril with Two Naphthyl Groups. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010063. [PMID: 36615258 PMCID: PMC9822147 DOI: 10.3390/molecules28010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Naphthyl groups are widely used as building blocks for the self-assembly of supramolecular crystal networks. Host-guest complexation of cucurbit[8]uril (Q[8]) with two guests NapA and Nap1 in both aqueous solution and solid state has been fully investigated. Experimental data indicated that double guests resided within the cavity of Q[8], generating highly stable homoternary complexes NapA2@Q[8] and Nap12@Q[8]. Meanwhile, the strong hydrogen-bonding and π···π interaction play critical roles in the formation of 1D supramolecular chain, as well as 2D and 3D networks in solid state.
Collapse
Affiliation(s)
- Zhong-Zheng Gao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Qingdao 266590, China
- Correspondence: (Z.-Z.G.); (J.-F.S.); (H.Z.)
| | - Lei Shen
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Qingdao 266590, China
| | - Yu-Lu Hu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Qingdao 266590, China
| | - Ji-Fu Sun
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Qingdao 266590, China
- Correspondence: (Z.-Z.G.); (J.-F.S.); (H.Z.)
| | - Gang Wei
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Mineral Resources, P.O. Box 218, Lindfield, NSW 2070, Australia
| | - Hui Zhao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Qingdao 266590, China
- Correspondence: (Z.-Z.G.); (J.-F.S.); (H.Z.)
| |
Collapse
|
10
|
Wang C, Tang Q, Zhao J, Xiao X, Tao Z, Huang Y. Stimuli‐Responsive Complexation Based on Twisted Cucurbit[14]uril and
p
‐Diaminoazobenzene. ChemistrySelect 2022. [DOI: 10.1002/slct.202202843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Cheng‐hui Wang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University Guiyang 550025 China
| | - Qing Tang
- College of Tobacco of Guizhou University Guizhou University Guiyang 550025 China
| | - Jie Zhao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University Guiyang 550025 China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University Guiyang 550025 China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University Guiyang 550025 China
| | - Ying Huang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University Guiyang 550025 China
- The Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of the National Education Ministry of China Guizhou University Guiyang 550025 China
| |
Collapse
|
11
|
Zhang W, Luo Y, Liu C, Yang MX, Gou JX, Huang Y, Ni XL, Tao Z, Xiao X. Supramolecular Room Temperature Phosphorescent Materials Based on Cucurbit[8]uril for Dual Detection of Dodine. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51429-51437. [PMID: 36342086 DOI: 10.1021/acsami.2c16567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, host-guest interactions of macrocycles have attracted much attention as an emerging method for enhancing the intersystem crossing of pure organic room-temperature phosphorescence. In this work, we utilize cucurbit[8]uril (Q[8]) to specifically recognize synthetic bromophenyl pyridine derivatives (BPCOOH) to construct a highly stable charge-transfer dimer, where the bromophenyl pyridine moiety of BPCOOH is encapsulated by Q[8] in a 1:2 host/guest ratio. The assemblies exhibit specific recognition and detection properties for dodine on both fluorescence and phosphorescence spectra. Subsequently, the solid films were prepared by introducing carboxymethylcellulose sodium into the assemblies, which greatly enhanced its RTP performance by increasing the noncovalent bonding interactions, enabling the visualization of high-strength RTP and quantitative testing of the solid state. Finally, this material was used for the application of portable indicator papers to achieve rapid and visualized detection of dodine in daily life, which provides more possibilities for the potential applications of cucurbit[n]uril-based room-temperature phosphorescence material.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Yang Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Chun Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Mao-Xia Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Jun-Xian Gou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Ying Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Xin-Long Ni
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Zhu Tao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
12
|
Luo Y, Zhang W, Yang XN, Yang MX, Min W, Tao Z, Xiao X. Cucurbit[10]uril-Based Orthogonal Supramolecular Polymers with Host-Guest and Coordination Interactions and Its Applications in Anion Classification. Inorg Chem 2022; 61:16678-16684. [PMID: 36206319 DOI: 10.1021/acs.inorgchem.2c02333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel orthogonal supramolecular polymer (Q[10]-TPDPB-Lu3+) in a host-guest ratio of 2:1 was successfully constructed utilizing the specificity and excellent cavity matching of Q[10] with the tripyridine derivatives (TPDPB). Significantly, non-covalent interactions between Q[10]'s hydrophobic cavities and Lu3+ were used to induce charge transfer of TPDPB to TPDPB and TPDPB to Lu3+, resulting in the construction of structurally interesting orthogonal assemblies with excellent fluorescence properties. Finally, the Q[10]-TPDPB-Lu3+ assemblies were shown to have good recognition and classification of strong and weak acid anions as well as iodide anions, and the classification was accompanied by a clear fluorescence emission change allowing visual observation.
Collapse
Affiliation(s)
- Yang Luo
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Wei Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Xi Nan Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Mao Xia Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Wen Min
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
13
|
Xiao H, Yang X, Yang L, Yang D, Luo Y, Yang HP, Tao Z, Xiao X, Li Q. Cucurbit [8] uril-based supramolecular fluorescent biomaterials for cytotoxicity and imaging studies of kidney cells. Front Chem 2022; 10:974607. [PMID: 36092664 PMCID: PMC9451006 DOI: 10.3389/fchem.2022.974607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
An accurate diagnosis of acute kidney injury (AKI) at the early stage is critical to not only allow preventative treatments in time but also forecast probable medication toxicity for preventing AKI from starting and progressing to severe kidney damage and death. Therefore, supramolecular fluorescent biomaterials based on Q [8] and PEG-APTS have been prepared herein. This study has found that the unique properties of outer surface methine and the positive density of Q [8] can form a stable assembly with PEG-APTS, and has provided the possibility for the faster crossing of the glomerular filtration barrier to enter into the resident cells of the kidney. In addition to the excellent fluorescence properties, the as-synthesized biomaterial Q [8]@PEG-APTS has possessed significantly low biological toxicity. Most importantly, the accumulation of Q [8]@PEG-APTS in large amounts in cytoplasm and nucleus of HK2 and HMCs cells, respectively, within 24 h enabled distinguishing kidney cells when diagnosing and providing some foundation for early AKI.
Collapse
Affiliation(s)
- Han Xiao
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xia Yang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Yang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Dan Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang, China
| | - Yang Luo
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang, China
| | - Hai-Ping Yang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang, China
| | - Qiu Li
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
14
|
Zhang W, Luo Y, Zhu PH, Ni XL, Redshaw C, Tao Z, Xiao X. Supramolecular Polymeric Material Based on Twisted Cucurbit[14]uril: Sensitive Detection and Removal of Potential Cyanide from Water. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37068-37075. [PMID: 35926157 DOI: 10.1021/acsami.2c10866] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Potassium ferricyanide in an aqueous solution is easily decomposed into highly toxic substances (potassium cyanide and hydrogen cyanide) by light or alkaline action, which poses a major hazard to environmental and human health. Here, a reticulated aggregation-induced emission (AIE) supramolecular polymer material (TPAP-Mb@tQ[14]) was prepared by the supramolecular self-assembly of twisted cucurbit[14]uril (tQ[14]) and a triphenylamine derivative (TPAP-Mb). TPAP-Mb@tQ[14] not only recognizes Fe(CN)63- with sensitive specificity with a limit of detection (LOD) of 1.64 × 10-7 M but can also effectively remove and adsorb Fe(CN)63- from an aqueous solution with a removal rate as high as 97.38%. Meanwhile, an important component of the supramolecular polymer material (tQ[14]) can be reused. Thus, the tQ[14]-based supramolecular assembly has the potential to be used for applications addressing toxic anionic contaminants present in aqueous environments.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Yang Luo
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Pan-Hua Zhu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Xin-Long Ni
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Carl Redshaw
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
15
|
Feng XH, Yu ZC, Zhang W, Redshaw C, Prior TJ, Meng TH, Li CR, Tao Z, Xiao X. A study of the inclusion complex formed between cucurcubit[7]uril and 1-[4-(dimethylamino)phenyl]-ethanone. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Wang C, Zou H, Cong H, Huang Y, Tao Z, Redshaw C, Xiao X. Detection of the Fungicide Dodine by means of Host‐Guest Complexation between Cucubit[10]uril and Acridine Orange. ChemistrySelect 2022. [DOI: 10.1002/slct.202201584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cheng‐hui Wang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University Guiyang 550025 China
| | - Hong‐qian Zou
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University Guiyang 550025 China
| | - Hang Cong
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University Guiyang 550025 China
- Enterprise Technology Center of Guizhou Province Guizhou University Guiyang 550025 China
| | - Ying Huang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University Guiyang 550025 China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University Guiyang 550025 China
| | - Carl Redshaw
- Department of Chemistry University of Hull Hull HU6 7RX, U.K
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University Guiyang 550025 China
| |
Collapse
|
17
|
Luo Y, Zhang W, Ren Q, Tao Z, Xiao X. Highly Efficient Artificial Light-Harvesting Systems Constructed in an Aqueous Solution Based on Twisted Cucurbit[14]Uril. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29806-29812. [PMID: 35748110 DOI: 10.1021/acsami.2c05599] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Relying on the supramolecular self-assembly of twisted cucurbit[14]urils (tQ[14]), anthracene derivatives (ADPy), Nile red (NiR), and rhodamine B (RB), highly efficient light-harvesting systems have been successfully designed in an aqueous medium. The addition of tQ[14] causes ADPy to aggregate through supramolecular self-assembly to form a supramolecular polymer (ADPy@tQ[14]) with excellent aggregation-induced fluorescence and an interesting spherical external morphology, making it a remarkable energy donor. Consequently, efficient energy-transfer processes have occurred between ADPy@tQ[14] assembly and NiR and RB, which both serve as effective energy acceptors while being loaded onto ADPy@tQ[14]. In the case of NiR, the energy-transfer efficiency is up to 72.45%, and the antenna effect is near 55.4 at a donor/acceptor ratio of 100:1, making it close to the light-harvesting systems in nature. As a result, effective water-soluble artificial light-harvesting systems are showing enormous prospective as versatile platforms for simulating photosynthesis.
Collapse
Affiliation(s)
- Yang Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Qian Ren
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Zhu Tao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| |
Collapse
|