Zhao Q, Li D, Peng J. Meticulous Molecular Engineering of Crystal Orientation and Morphology in Conjugated Polymer Thin Films for Field-Effect Transistors.
ACS APPLIED MATERIALS & INTERFACES 2024;
16:9098-9107. [PMID:
38319877 DOI:
10.1021/acsami.3c16192]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The ability to precisely tailor molecular packing and film morphology in conjugated polymers offers a robust means to control their optoelectronic properties. This, however, remains a grand challenge. Herein, we report the dependency of molecular packing of an important conjugated polymer, poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT), on a set of intrinsic parameters and unveil the correlation between their crystalline structures and charge transport characteristics. Specifically, a family of PBTTT with varying side chains (i.e., hexyl, octyl, decyl, dodecyl, tetradecyl, and hexadecyl referred to as C6, C8, C10, C12, C14, and C16, respectively) and molecular weights (MWs) with a focus on C14 are judiciously designed and synthesized. Various crystalline structures are yielded by tuning the alkyl chain and MW of PBTTT together with thermal annealing. It reveals that extending the alkyl chain length of PBTTT to C14, along with a larger MW and heating at 180 °C, promotes the formation of edge-on crystallites with significantly improved orientation and ordering. Furthermore, these distinct crystalline structures greatly impact their charge mobilities. This study sheds light on the tailored design of crystalline structures in PBTTT through a synergetic approach, which paves the way for potential applications of PBTTT and other conjugated polymers in optoelectronic devices with enhanced performance.
Collapse