1
|
Brunelli F, Russo C, Giustiniano M, Tron GC. Each Interruption is an Opportunity: Novel Synthetic Strategies Explored Through Interrupted Click Reactions. Chemistry 2024; 30:e202303844. [PMID: 38408267 DOI: 10.1002/chem.202303844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Indexed: 02/28/2024]
Abstract
The particular and unique mechanism of the copper-catalyzed reaction between azides and alkynes (CuAAC) has not only allowed for the efficient synthesis of 1,2,3-trisubstituted 1,4-triazoles in excellent yields and under mild conditions, becoming the quintessential click reaction, but it has also enabled the straightforward formation of a metallocycle intermediate, the copper triazolyl. This, under suitable reaction conditions able to suppress its protonolysis, can be used either for the creation of new bicyclic triazolyl structures or for the generation of novel three or four-component reactions. The aim of this review is to rationalize and unify all these transformations, which are collectively referred to as "interrupted click reactions".
Collapse
Affiliation(s)
- Francesca Brunelli
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Camilla Russo
- Dipartimento di Farmacia, Università degli Studi, Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Mariateresa Giustiniano
- Dipartimento di Farmacia, Università degli Studi, Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Gian Cesare Tron
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| |
Collapse
|
2
|
Pothi TA, Ramana CV. Intramolecular Nitrone Interrupted Click Reaction. Org Lett 2024; 26:2233-2237. [PMID: 38483201 DOI: 10.1021/acs.orglett.4c00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
We document the intramolecular interception of a Cu-catalyzed azidoalkyne cycloaddition employing a suitably placed nitrone group, providing a simple route to the unprecedented spiro-polyheterocyclic scaffold. The reaction is comprised of a Cu-catalyzed [3 + 2]-cycloaddition of (2-azidoaryl)isatogen with a terminal alkyne and the intramolecular trapping of the transient Cu-triazolide intermediate with the isatogen, with a net formation of one C-C and two C-N bonds and the new heterocyclic ring being spiro-annulated.
Collapse
Affiliation(s)
- Tejas A Pothi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- BASF Chemicals India Pvt. Ltd., BASF Innovation Campus Asia Pacific (Mumbai), Navi Mumbai 400705, India
| | - Chepuri V Ramana
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Wang J, Tian T, Zhang R, Li M, Chen J, Qin A, Tang BZ. Efficient Conversion of Inert Nitriles to Multifunctional Poly(5-amino-1,2,3-triazole)s via Regioselective Click Polymerization with Azide Monomers under Ambient Conditions. J Am Chem Soc 2024; 146:6652-6664. [PMID: 38419303 DOI: 10.1021/jacs.3c12588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Nitrile compounds are abundant, stable, cheap, and readily available natural and chemical industrial sources. However, the efficient conversion of nitrile monomers to functional polymers is mostly limited due to their inert reactivity, and developing efficient polymerizations based on nitrile monomers under very mild conditions is still a big challenge. In this work, a facile and powerful base-catalyzed acetonitrile-azide click polymerization was successfully established under ambient conditions. This polymerization also enjoys the merits of short reaction time (15 min), 100% atom economy, transition-metal-free catalyst system, and regioselectivity. A series of poly(5-amino-1,2,3-triazole)s (PATAs) with high weight-average molecular weights (Mw, up to 204,000) were produced in excellent yields (up to 99%). The PATAs containing tetraphenylethene (TPE) moieties exhibit unique aggregation-induced emission (AIE) characteristics, which could be used to sensitively detect Fe(III) ions with a low limit of detection (1.205 × 10-7 M) and to specifically image lysosomes of living cells. Notably, PATAs could be facilely post-modified due to their containing primary amino groups in the polymer chains even through a one-pot tandem reaction. Thus, this work not only establishes a new powerful click polymerization to convert stable nitriles but also generates a series of PATAs with versatile properties for diverse applications.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Tian Tian
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Rongyuan Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK), Shenzhen, Guangdong 518172, China
| | - Mingzhao Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Jie Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK), Shenzhen, Guangdong 518172, China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| |
Collapse
|
4
|
Alsolami ES, Alorfi HS, Alamry KA, Hussein MA. One-pot multicomponent polymerization towards heterocyclic polymers: a mini review. RSC Adv 2024; 14:1757-1781. [PMID: 38192311 PMCID: PMC10772543 DOI: 10.1039/d3ra07278a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
Multicomponent polymerization (MCP) is an innovative field related to polymer-based chemistry that offers numerous advantages derived from multicomponent reactions (MCRs). One of the key advantages of MCP is its ability to achieve high efficiency. Additionally, MCP offers other advantages, including operational simplicity, mild reaction conditions, and atom economy. MCP is a versatile technique that is used for synthesizing a wide range of analogs from several classes of heterocyclic compounds. The ring structures of heterocyclic polymers give them different mechanical, photophysical, and electrical properties to other types of polymers. Because of their unique properties, heterocyclic polymers have been widely utilized in various significant applications. MCRs are a type of chemical reaction that can be used to synthesize a wide variety of compounds in a single pot, which allows researchers to quickly assemble libraries of compounds. The development of MCPs from MCRs has made it easier to access a library of polymers with tunable structures. However, MCPs related to alkynes or acetylene triple bonds have more potential. In this review study, we provide an overview of the synthesis of heteroatom-functional polymers and alkyne-based development or other reactions such as Cu-catalyzed, catalyst-free, MCCP, MCTPs, green monomers, A3 coupling reactions, Passerini reactions, and sequence- and controlled-multicomponent polymerization. The up-to-date progress provides a convenient and efficient kind of approach related to heteroatoms and MCP synthesis, and perspectives in terms of future directions are also discussed in the study.
Collapse
Affiliation(s)
- Eman S Alsolami
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Hajar S Alorfi
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Khalid A Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Mahmoud A Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| |
Collapse
|
5
|
Zheng N, Gao H, Jiang Z, Song W. Multicomponent polymerization of sulfur, chloroform and diamine toward polythiourea. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Vala D, Vala RM, Patel HM. Versatile Synthetic Platform for 1,2,3-Triazole Chemistry. ACS OMEGA 2022; 7:36945-36987. [PMID: 36312377 PMCID: PMC9608397 DOI: 10.1021/acsomega.2c04883] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/30/2022] [Indexed: 05/31/2023]
Abstract
1,2,3-Triazole scaffolds are not obtained in nature, but they are still intensely investigated by synthetic chemists in various fields due to their excellent properties and green synthetic routes. This review will provide a library of all synthetic routes used in the past 21 years to synthesize 1,2,3-triazoles and their derivatives using various metal catalysts (such as Cu, Ni, Ru, Ir, Rh, Pd, Au, Ag, Zn, and Sm), organocatalysts, metal-free as well as solvent- and catalyst-free neat syntheses, along with their mechanistic cycles, recyclability studies, solvent systems, and reaction condition effects on regioselectivity. Constant developments indicate that 1,2,3-triazoles will help lead to future organic synthesis and are useful for creating molecular libraries of various functionalized 1,2,3-triazoles.
Collapse
|