1
|
VanderWeide A, Prokopchuk DE. Cyclopentadienyl ring activation in organometallic chemistry and catalysis. Nat Rev Chem 2023:10.1038/s41570-023-00501-1. [PMID: 37258685 DOI: 10.1038/s41570-023-00501-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
The cyclopentadienyl (Cp) ligand is a cornerstone of modern organometallic chemistry. Since the discovery of ferrocene, the Cp ligand and its various derivatives have become foundational motifs in catalysis, medicine and materials science. Although largely considered an ancillary ligand for altering the stereoelectronic properties of transition metal centres, there is mounting evidence that the core Cp ring structure also serves as a reservoir for reactive protons (H+), hydrides (H-) or radical hydrogen (H•) atoms. This Review chronicles the field of Cp ring activation, highlighting the pivotal role that Cp ligands can have in electrocatalytic H2 production, N2 reduction, hydride transfer reactions and proton-coupled electron transfer.
Collapse
|
2
|
Ahmed M, Tran DT, Putziger J, Ke Z, Abtahi A, Wang Z, Chen K, Lang K, Mei J. Tetracyanocyclopentadienide-Based Stable Poly(aromatic) Anions. ACS Macro Lett 2022; 11:72-77. [PMID: 35574784 DOI: 10.1021/acsmacrolett.1c00711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyelectrolytes, a class of polymer with ionized functional groups in their repeating units, are widely used in various applications. Many ionized groups have been incorporated into polyelectrolytes, but aromatic anions are rarely investigated. Here, we first successfully incorporate a stable tetracyanocyclopentadienide (TCCp) aromatic anion into polynorbornene (PNb)-based electrolytes (PNb-TCCp) through ring-opening metathesis polymerization (ROMP) with controllable molecular weight and low polydispersity. PNb-TCCp shows a high ionic conductivity of 4.5 × 10-5 S/cm in thin films. Due to its highly stable aromatic anion groups and favorable interactions with aromatic cations, it could improve thermal stability of doped conjugated polymers. Pairing with doped poly(3,4-ethylenedioxythiophene) (PEDOT) through salt metathesis, the generated poly ion complex PEDOT:PNb-TCCp retains its conductivity up to 180 °C.
Collapse
Affiliation(s)
- Mustafa Ahmed
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dung T. Tran
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - John Putziger
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhifan Ke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashkan Abtahi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhiyang Wang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ke Chen
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kai Lang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jianguo Mei
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Zhang H, Zhou Z, Chen X, Yu B, Luo Z, Li X, Rahman MA, Sha Y. Sequence-Controlled Metallopolymers: Synthesis and Properties. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hao Zhang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhou Zhou
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaofan Chen
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Yu
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenyang Luo
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xiang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Md Anisur Rahman
- Chemical Science Division, Oak Ridge National LaboratoryOak Ridge, Tennessee 37831-2008, United States
| | - Ye Sha
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Li J, Fernandez-Alvarez R, Tošner Z, Kozlík P, Štěpánek M, Zhigunov A, Urbanová M, Brus J, Uchman M, Matějíček P. Polynorbornene-Based Polyelectrolytes with Covalently Attached Metallacarboranes: Synthesis, Characterization, and Lithium-Ion Mobility. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jianwei Li
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Roberto Fernandez-Alvarez
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Zdeněk Tošner
- NMR Laboratory, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Petr Kozlík
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Alexander Zhigunov
- Institute of Macromolecular Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 16206 Prague 6, Czechia
| | - Martina Urbanová
- Institute of Macromolecular Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 16206 Prague 6, Czechia
| | - Jiří Brus
- Institute of Macromolecular Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 16206 Prague 6, Czechia
| | - Mariusz Uchman
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| | - Pavel Matějíček
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czechia
| |
Collapse
|
5
|
Sha Y, Shen Z, Jia H, Luo Z. Main-Chain Ferrocene-Containing Polymers Prepared by Acyclic Diene Metathesis Polymerization: A Review. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666191227111804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ferrocene, the crown of metallocene family, is widely studied as a functional
unit in electrochemical and catalytic applications due to its sandwich structure. Ferrocene
moieties can be embedded into the polymer backbone, leading to main-chain ferrocenecontaining
polymers. These polymeric materials combine the unique functionalities of
iron center with the processabilities of polymers. As one of the choice polymerization
techniques, acyclic diene metathesis (ADMET) polymerization serves as a versatile
method to prepare main-chain ferrocene-containing polymers under mild conditions using
α,ω-dienes as monomers. This paper overviews main-chain ferrocene-containing polymers
prepared by ADMET polymerization. Advances in the design, synthesis and applications
of this class of organometallic monomers and polymers are detailed.
Collapse
Affiliation(s)
- Ye Sha
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhihua Shen
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Huan Jia
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhenyang Luo
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
6
|
Jochriem M, Casper LA, Vanicek S, Petersen D, Kopacka H, Wurst K, Müller T, Winter RF, Bildstein B. Rhodocenium Monocarboxylic Acid Hexafluoridophosphate and Its Derivatives: Synthesis, Spectroscopy, Structure, and Electrochemistry. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Markus Jochriem
- Institute of General Inorganic and Theoretical Chemistry University of Innsbruck 6020 Innsbruck Austria
| | - Larissa A. Casper
- Department of Chemistry University of Konstanz Universitätsstrasse 10 784557 Konstanz Germany
| | - Stefan Vanicek
- Institute of General Inorganic and Theoretical Chemistry University of Innsbruck 6020 Innsbruck Austria
- Department of Chemistry University of Oslo Sem Sælands vei 26 0315 Oslo Norway
| | - Dirk Petersen
- Department of Chemistry University of Oslo Sem Sælands vei 26 0315 Oslo Norway
| | - Holger Kopacka
- Institute of General Inorganic and Theoretical Chemistry University of Innsbruck 6020 Innsbruck Austria
| | - Klaus Wurst
- Institute of General Inorganic and Theoretical Chemistry University of Innsbruck 6020 Innsbruck Austria
| | - Thomas Müller
- Institute of Organic Chemistry University of Innsbruck Center for Chemistry and Biomedicine 80‐82 6020 Innsbruck Austria
| | - Rainer F. Winter
- Department of Chemistry University of Konstanz Universitätsstrasse 10 784557 Konstanz Germany
| | - Benno Bildstein
- Institute of General Inorganic and Theoretical Chemistry University of Innsbruck 6020 Innsbruck Austria
| |
Collapse
|
7
|
Zhu T, Zhang J, Tang C. Metallo-Polyelectrolytes: Correlating Macromolecular Architectures with Properties and Applications. TRENDS IN CHEMISTRY 2020; 2:227-240. [PMID: 34337370 PMCID: PMC8323828 DOI: 10.1016/j.trechm.2019.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Since the middle of the 20th century, metallopolymers have represented a standalone subfield with a beneficial combination of functionality from inorganic metal centers and processability from the organic polymeric frameworks. Metallo-polyelectrolytes are a new class of soft materials that showcase fundamentally different properties from neutral polymers due to their intrinsically ionic behaviors. This review describes recent trends in metallo-polyelectrolytes and discusses emerging properties and challenges, as well as future directions from a perspective of macromolecular architectures. The correlations between macromolecular architectures and properties are discussed from copolymer self-assembly, metallo-enzymes for biomedical applications, metallo-peptides for catalysis, crosslinked networks, and metallogels.
Collapse
Affiliation(s)
- Tianyu Zhu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Jiuyang Zhang
- School of Chemistry and Chemical Engineering, Jiangsu Hi-Tech Key Laboratory for Biomedical Research, Southeast University, 211189, Nanjing, PR China
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
8
|
Sha Y, Zhu T, Rahman A, Cha Y, Hwang J, Luo Z, Tang C. Synthesis of Site-specific Charged Metallopolymers via Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization. POLYMER 2020; 187:122095. [PMID: 32863439 PMCID: PMC7451713 DOI: 10.1016/j.polymer.2019.122095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Site-specific cobaltocenium-labeled polymers are synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization using cobaltocenium-labeled chain transfer agents. These chain transfer agents show counterion-dependent solubility. Based on the chemical structure of the chain transfer agents, single cobaltocenium moieties are dictated to be in predetermined locations at either the center or terminals of the polymer chains. Polymerization of hydrophobic monomers (methyl methacrylate, methyl acrylate and styrene) and hydrophilic monomers (2-(dimethylamino)ethyl methacrylate and methacrylic acid) is demonstrated to follow a controlled manner based on kinetic studies. Cobaltocenium-labeled polymers with molecular weights greater than 100,000 Da can be prepared by using a difunctional chain transfer agent. Photophysical properties, electrochemical properties, thermal properties and morphology of the cobaltocenium-labeled polymers are also investigated.
Collapse
Affiliation(s)
- Ye Sha
- College of Science, Nanjing Forestry University, Nanjing, 210037, PR China
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Tianyu Zhu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Anisur Rahman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Yujin Cha
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jihyeon Hwang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Zhenyang Luo
- College of Science, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
9
|
Nie FM, Cui J, Zhou YF, Pan L, Ma Z, Li YS. Molecular-Level Tuning toward Aggregation Dynamics of Self-Healing Materials. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00871] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Feng-Min Nie
- Tianjin Key Lab Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Jing Cui
- Tianjin Key Lab Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Yu-Feng Zhou
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450002, P. R. China
| | - Li Pan
- Tianjin Key Lab Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Zhe Ma
- Tianjin Key Lab Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Yue-Sheng Li
- Tianjin Key Lab Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| |
Collapse
|
10
|
Zhang S, Moudgil K, Jucov E, Risko C, Timofeeva TV, Marder SR, Barlow S. Organometallic hydride-transfer agents as reductants for organic semiconductor molecules. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Alkan A, Gleede T, Wurm FR. Ruthenocenyl Glycidyl Ether: A Ruthenium-Containing Epoxide for Anionic Polymerization. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Arda Alkan
- Max Planck Institute for Polymer Research (MPIP), Ackermannweg 10, 55128 Mainz, Germany
| | - Tassilo Gleede
- Max Planck Institute for Polymer Research (MPIP), Ackermannweg 10, 55128 Mainz, Germany
| | - Frederik R. Wurm
- Max Planck Institute for Polymer Research (MPIP), Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
12
|
Abstract
Stimuli-responsive polymers respond to a variety of external stimuli, which include optical, electrical, thermal, mechanical, redox, pH, chemical, environmental and biological signals. This paper is concerned with the process of forming such polymers by RAFT polymerization.
Collapse
|
13
|
Ren R, Wang Y, Liu D, Sun W. Facile preparation of a novel nickel-containing metallopolymer via RAFT polymerization. Des Monomers Polym 2016; 20:300-307. [PMID: 29491801 PMCID: PMC5812193 DOI: 10.1080/15685551.2016.1257378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/28/2016] [Indexed: 11/04/2022] Open
Abstract
While the metallocene polymers were comprehensively studied, other metallopolymers are rarely explored. The major challenge is the lack of a synthetic platform for the preparation of metal coordinated derivatives, monomers, and polymers. Therefore, the development of a facile synthesis of new metal coordinated monomers and polymers is critically needed. A novel successfully synthesized methacrylate-containing nickel complex is reported in this communication. Controlled RAFT polymerizations are further carried out to prepare a series of side-chain nickel containing polymers with different molecular weight and narrow Polydispersity Index (PDI). This new metallopolymer performs specific electrochemical and excellent thermal properties. This study provides a novel and convenient strategy to prepare metallopolymer with controllable molecular weight, which has potential applications in assembled, catalytic and magnetic materials.
Collapse
Affiliation(s)
- Rong Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Yanhua Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Dizheng Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Weilin Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Mrózek O, Vinklárek J, Růžičková Z, Honzíček J. Indenyl Compounds with Constrained Hapticity: The Effect of Strong Intramolecular Coordination. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201601029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ondřej Mrózek
- Department of General and Inorganic ChemistryFaculty of Chemical TechnologyUniversity of PardubiceStudentská 57353210 PardubiceCzech Republic
| | - Jaromír Vinklárek
- Department of General and Inorganic ChemistryFaculty of Chemical TechnologyUniversity of PardubiceStudentská 57353210 PardubiceCzech Republic
| | - Zdeňka Růžičková
- Department of General and Inorganic ChemistryFaculty of Chemical TechnologyUniversity of PardubiceStudentská 57353210 PardubiceCzech Republic
| | - Jan Honzíček
- Institute of Chemistry and Technology of Macromolecular MaterialsFaculty of Chemical TechnologyUniversity of PardubiceStudentská 57353210PardubiceCzech Republic
| |
Collapse
|
15
|
Yan Y, Zhang J, Ren L, Tang C. Metal-containing and related polymers for biomedical applications. Chem Soc Rev 2016; 45:5232-63. [PMID: 26910408 PMCID: PMC4996776 DOI: 10.1039/c6cs00026f] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A survey of the most recent progress in the biomedical applications of metal-containing polymers is given. Due to the unique optical, electrochemical, and magnetic properties, at least 30 different metal elements, most of them transition metals, are introduced into polymeric frameworks for interactions with biology-relevant substrates via various means. Inspired by the advance of metal-containing small molecular drugs and promoted by the great progress in polymer chemistry, metal-containing polymers have gained momentum during recent decades. According to their different applications, this review summarizes the following biomedical applications: (1) metal-containing polymers as drug delivery vehicles; (2) metal-containing polymeric drugs and biocides, including antimicrobial and antiviral agents, anticancer drugs, photodynamic therapy agents, radiotherapy agents and biocides; (3) metal-containing polymers as biosensors, and (4) metal-containing polymers in bioimaging.
Collapse
Affiliation(s)
- Yi Yan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
- Department of Applied Chemistry, School of Science, Northwestern Polytechnical, University, Xi’an, Shannxi, 710129, China
| | - Jiuyang Zhang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Lixia Ren
- School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| |
Collapse
|
16
|
Gu H, Ciganda R, Hernández R, Castel P, Vax A, Zhao P, Ruiz J, Astruc D. Diblock metallocopolymers containing various iron sandwich complexes: living ROMP synthesis and selective reversible oxidation. Polym Chem 2016. [DOI: 10.1039/c6py00202a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
New diblock copolymers containing two iron-sandwich complexes in the side chain have been synthesized and oxidized to obtain mixed-valent FeII–FeIII copolymers.
Collapse
Affiliation(s)
- Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education
- Sichuan University
- Chengdu 610065
- P. R. China
- ISM
| | | | - Ricardo Hernández
- Facultad de Química de San Sebastián
- Universidad del País Vasco
- 20080 San Sebastián
- Spain
| | | | | | - Pengxiang Zhao
- Science and Technology on Surface Physics and Chemistry Laboratory
- Mianyang 621907
- China
| | - Jaime Ruiz
- ISM
- UMR CNRS No 5255
- Univ. Bordeaux
- 33405 Talence Cedex
- France
| | - Didier Astruc
- ISM
- UMR CNRS No 5255
- Univ. Bordeaux
- 33405 Talence Cedex
- France
| |
Collapse
|
17
|
Honzíčková I, Vinklárek J, Romão CC, Růžičková Z, Honzíček J. Novel indenyl ligands bearing electron-withdrawing functional groups. NEW J CHEM 2016. [DOI: 10.1039/c5nj02406d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Dragutan I, Dragutan V, Simionescu BC, Demonceau A, Fischer H. Recent advances in metathesis-derived polymers containing transition metals in the side chain. Beilstein J Org Chem 2015; 11:2747-62. [PMID: 26877797 PMCID: PMC4734322 DOI: 10.3762/bjoc.11.296] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/30/2015] [Indexed: 12/29/2022] Open
Abstract
This account critically surveys the field of side-chain transition metal-containing polymers as prepared by controlled living ring-opening metathesis polymerization (ROMP) of the respective metal-incorporating monomers. Ferrocene- and other metallocene-modified polymers, macromolecules including metal-carbonyl complexes, polymers tethering early or late transition metal complexes, etc. are herein discussed. Recent advances in the design and syntheses reported mainly during the last three years are highlighted, with special emphasis on new trends for superior applications of these hybrid materials.
Collapse
Affiliation(s)
- Ileana Dragutan
- Institute of Organic Chemistry, Romanian Academy, 202B Spl. Independentei, POBox 35-108, Bucharest 060023, Romania
| | - Valerian Dragutan
- Institute of Organic Chemistry, Romanian Academy, 202B Spl. Independentei, POBox 35-108, Bucharest 060023, Romania
| | - Bogdan C Simionescu
- Petru Poni Institute of Macromolecular Chemistry, Romanian Academy, Iasi, Romania
| | - Albert Demonceau
- Macromolecular Chemistry and Organic Catalysis, Institute of Chemistry (B6a), University of Liège, Sart Tilman, Liège 4000, Belgium
| | - Helmut Fischer
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| |
Collapse
|
19
|
Ciganda R, Gu H, Castel P, Zhao P, Ruiz J, Hernández R, Astruc D. Living ROMP Synthesis and Redox Properties of Diblock Ferrocene/Cobalticenium Copolymers. Macromol Rapid Commun 2015; 37:105-111. [DOI: 10.1002/marc.201500566] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/13/2015] [Indexed: 01/29/2023]
Affiliation(s)
- Roberto Ciganda
- ISM, UMR CNRS No 5255; Univ. Bordeaux; 33405 Talence Cedex France
- Facultad de Química de San Sebastián; Universidad del País Vasco; Apdo. 1072 20080 San Sebastián Spain
| | - Haibin Gu
- ISM, UMR CNRS No 5255; Univ. Bordeaux; 33405 Talence Cedex France
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education; Sichuan University; Chengdu 610065 P. R. China
| | - Patricia Castel
- ISM, UMR CNRS No 5255; Univ. Bordeaux; 33405 Talence Cedex France
| | - Penxiang Zhao
- Science and Technology on Surface Physics and Chemistry Laboratory; PO Box 718-35 Mianyang 621907 Sichuan China
| | - Jaime Ruiz
- ISM, UMR CNRS No 5255; Univ. Bordeaux; 33405 Talence Cedex France
| | - Ricardo Hernández
- Facultad de Química de San Sebastián; Universidad del País Vasco; Apdo. 1072 20080 San Sebastián Spain
| | - Didier Astruc
- ISM, UMR CNRS No 5255; Univ. Bordeaux; 33405 Talence Cedex France
| |
Collapse
|