1
|
Sagar S, Nath P, Ray A, Sarkar A, Panda TK. Crafting sustainable solutions: architecting biodegradable copolymers through controlled ring-opening copolymerization. Dalton Trans 2024; 53:12837-12866. [PMID: 38973394 DOI: 10.1039/d4dt01054j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Polylactic acid (PLA) is a biodegradable and biocompatible polymer with versatile applications in packaging and medicine. It is derived from lactic acid and thus represents an eco-friendly option sourced from renewable raw materials. Despite its advantages, PLA exhibits few drawbacks, such as brittleness and relatively high melting and glass transition temperatures. However, these limitations can be addressed through copolymerization with other monomers like ε-caprolactone (ε-CL), resulting in a composite material with improved physical properties. This paper comprehensively reviews achievements in PLA-PCL copolymerization using organometallic catalysts, discussing scientific findings and various copolymer architectures obtained, including random or block configurations. It also demonstrates various sustainable catalysts for achieving the required microstructure under mild reaction conditions without the aid of any external initiator.
Collapse
Affiliation(s)
- Shweta Sagar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi - 502 284, Sangareddy, Telangana, India.
| | - Priyanku Nath
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi - 502 284, Sangareddy, Telangana, India.
| | - Aranya Ray
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi - 502 284, Sangareddy, Telangana, India.
| | - Alok Sarkar
- Momentive Performance Materials Pvt. Ltd, Survey No. 09, Hosur Road, Electronic City (West), Bangalore-560100, India
| | - Tarun K Panda
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi - 502 284, Sangareddy, Telangana, India.
| |
Collapse
|
2
|
Glöckler E, Ghosh S, Schulz S. β-Diketiminate and β-Ketoiminate Metal Catalysts for Ring-Opening Polymerization of Cyclic Esters. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2121837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Eduard Glöckler
- Institute for Inorganic Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Swarup Ghosh
- Institute for Inorganic Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Stephan Schulz
- Institute for Inorganic Chemistry, University of Duisburg-Essen, Essen, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
3
|
Akintayo DC, Munzeiwa WA, Jonnalagadda SB, Omondi B. Influence of nuclearity and coordination geometry on the catalytic activity of Zn(II) carboxylate complexes in ring-opening polymerization of ε-caprolactone and lactides. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Ryzhakov D, Printz G, Jacques B, Messaoudi S, Dumas F, Dagorne S, Le Bideau F. Organo-catalyzed/initiated ring opening co-polymerization of cyclic anhydrides and epoxides: an emerging story. Polym Chem 2021. [DOI: 10.1039/d1py00020a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review deals with recent organo-catalyzed/initiated developments of co-polymerization of cyclic anhydrides and epoxides to access polyesters.
Collapse
Affiliation(s)
| | - Gaël Printz
- Institut de Chimie
- CNRS – Strasbourg University
- Strasbourg
- France
| | | | | | | | - Samuel Dagorne
- Institut de Chimie
- CNRS – Strasbourg University
- Strasbourg
- France
| | | |
Collapse
|
5
|
Jain I, Malik P. Advances in urea and thiourea catalyzed ring opening polymerization: A brief overview. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109791] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Ghosh S, Glöckler E, Wölper C, Tjaberings A, Gröschel AH, Schulz S. Heteroleptic β-Ketoiminate Magnesium Catalysts for the Ring-Opening Polymerization of Lactide. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Swarup Ghosh
- Faculty of Chemistry, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Universitätsstraße 7, S07 S03 C30, 45141 Essen, Germany
| | - Eduard Glöckler
- Faculty of Chemistry, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Universitätsstraße 7, S07 S03 C30, 45141 Essen, Germany
| | - Christoph Wölper
- Faculty of Chemistry, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Universitätsstraße 7, S07 S03 C30, 45141 Essen, Germany
| | - Alexander Tjaberings
- Faculty of Chemistry, University of Münster and Center for Soft Nanoscience (SoN), Busso-Peus-Strasse 10, 48149 Münster, Germany
| | - André H. Gröschel
- Faculty of Chemistry, University of Münster and Center for Soft Nanoscience (SoN), Busso-Peus-Strasse 10, 48149 Münster, Germany
| | - Stephan Schulz
- Faculty of Chemistry, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Universitätsstraße 7, S07 S03 C30, 45141 Essen, Germany
| |
Collapse
|
7
|
Liang J, Yin T, Han S, Yang J. Synthesis of macrocyclic poly(α-hydroxyl acids) via DABCO-mediated ROP of O-carboxylanhydrides derived from l-phenylalanine even in the presence of an alcohol. Polym Chem 2020. [DOI: 10.1039/d0py01083a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
On exploration of a catalytic system including simple 1,4-diazabicyclo-[2.2.2]octane (DABCO), triethylboron (TEB) and benzylalcohol (BnOH), a new pathway to achieve cyclic PAHAs was developed via ROP of OCAs.
Collapse
Affiliation(s)
- Jinpeng Liang
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
| | - Ting Yin
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
| | - Song Han
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
| | - Jing Yang
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
| |
Collapse
|
8
|
Nifant’ev I, Ivchenko P. DFT Modeling of Organocatalytic Ring-Opening Polymerization of Cyclic Esters: A Crucial Role of Proton Exchange and Hydrogen Bonding. Polymers (Basel) 2019; 11:E2078. [PMID: 31842423 PMCID: PMC6961033 DOI: 10.3390/polym11122078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 01/17/2023] Open
Abstract
Organocatalysis is highly efficient in the ring-opening polymerization (ROP) of cyclic esters. A variety of initiators broaden the areas of organocatalysis in polymerization of different monomers, such as lactones, cyclic carbonates, lactides or gycolides, ethylene phosphates and phosphonates, and others. The mechanisms of organocatalytic ROP are at least as diverse as the mechanisms of coordination ROP; the study of these mechanisms is critical in ensuring the polymer compositions and architectures. The use of density functional theory (DFT) methods for comparative modeling and visualization of organocatalytic ROP pathways, in line with experimental proof of the structures of the reaction intermediates, make it possible to establish these mechanisms. In the present review, which continues and complements our recent manuscript that focused on DFT modeling of coordination ROP, we summarized the results of DFT modeling of organocatalytic ROP of cyclic esters and some related organocatalytic processes, such as polyester transesterification.
Collapse
Affiliation(s)
- Ilya Nifant’ev
- Chemistry Department, M.V. Lomonosov Moscow State University, 1 Leninskie Gory Str., Building 3, 119991 Moscow, Russia
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia
| | - Pavel Ivchenko
- Chemistry Department, M.V. Lomonosov Moscow State University, 1 Leninskie Gory Str., Building 3, 119991 Moscow, Russia
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia
| |
Collapse
|
9
|
Hewawasam RS, Kalana ULDI, Dharmaratne NU, Wright TJ, Bannin TJ, Kiesewetter ET, Kiesewetter MK. Bisurea and Bisthiourea H-Bonding Organocatalysts for Ring-Opening Polymerization: Cues for the Catalyst Design. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01875] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rukshika S. Hewawasam
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - U. L. D. Inush Kalana
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | | | - Thomas J. Wright
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Timothy J. Bannin
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Elizabeth T. Kiesewetter
- Department of Physical Sciences, Rhode Island College, Providence, Rhode Island 02908, United States
| | - Matthew K. Kiesewetter
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
10
|
Kassick AJ, Allen HN, Yerneni SS, Pary F, Kovaliov M, Cheng C, Pravetoni M, Tomycz ND, Whiting DM, Nelson TL, Feasel M, Campbell PG, Kolber B, Averick S. Covalent Poly(lactic acid) Nanoparticles for the Sustained Delivery of Naloxone. ACS APPLIED BIO MATERIALS 2019; 2:3418-3428. [PMID: 31497753 PMCID: PMC6731033 DOI: 10.1021/acsabm.9b00380] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The opioid epidemic currently plaguing the United States has been exacerbated by an alarming rise in fatal overdoses as a result of the proliferated abuse of synthetic mu opioid receptor (MOR) agonists, such as fentanyl and its related analogues. Attempts to manage this crisis have focused primarily on widespread distribution of the clinically approved opioid reversal agent naloxone (Narcan); however, due to the intrinsic metabolic lability of naloxone, these measures have demonstrated limited effectiveness against synthetic opioid toxicity. This work reports a novel polymer-based strategy to create a long-acting formulation of naloxone with the potential to address this critical issue by utilizing covalent nanoparticle (cNP) drug delivery technology. Covalently loaded naloxone nanoparticles (Nal-cNPs) were prepared via the naloxone-initiated, ring-opening polymerization (ROP) of l-lactide in the presence of a bifunctional thiourea organocatalyst with subsequent precipitation of the resulting naloxone-poly(l-lactic acid) polymer. This protocol afforded well-defined nanoparticles possessing a drug loading of approximately 7% w/w. The resulting Nal-cNPs demonstrated excellent biocompatibility, while exhibiting sustained linear release kinetics in vitro and blocking the effects of high dose (10 mg/kg) acute morphine for up to 98 h in an in vivo rodent model of neuropathic pain.
Collapse
Affiliation(s)
- Andrew J. Kassick
- Neuroscience Disruptive Research Lab, Allegheny Health Network Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Heather N. Allen
- Department of Biological Sciences and Chronic Pain Research Consortium, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Saigopalakrishna S. Yerneni
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Fathima Pary
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Marina Kovaliov
- Neuroscience Disruptive Research Lab, Allegheny Health Network Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Cooper Cheng
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota Medical School Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Nestor D. Tomycz
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Donald M. Whiting
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Toby L. Nelson
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Michael Feasel
- Chemical Biological Center, APG, U.S. Army Combat Capabilities Development Command, Edgewood, Maryland 21010, United States
| | - Phil G. Campbell
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Engineering and Engineering Research Accelerator, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Benedict Kolber
- Department of Biological Sciences and Chronic Pain Research Consortium, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Saadyah Averick
- Neuroscience Disruptive Research Lab, Allegheny Health Network Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| |
Collapse
|
11
|
Ghosh S, Schäfer PM, Dittrich D, Scheiper C, Steiniger P, Fink G, Ksiazkiewicz AN, Tjaberings A, Wölper C, Gröschel AH, Pich A, Herres‐Pawlis S, Schulz S. Heterolepic β-Ketoiminate Zinc Phenoxide Complexes as Efficient Catalysts for the Ring Opening Polymerization of Lactide. ChemistryOpen 2019; 8:951-960. [PMID: 31338277 PMCID: PMC6625107 DOI: 10.1002/open.201900203] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Indexed: 11/25/2022] Open
Abstract
Zinc phenoxide complexes L1ZnOAr 1-4 (L1=Me2NC2H4NC(Me)CHC(Me)O) and L2ZnOAr 5-8 (L2=Me2NC3H6NC(Me)CHC(Me)O) with donor-functionalized β-ketoiminate ligands (L1/2) and OAr substituents (Ar=Ph 1, 5; 2,6-Me2-C6H3 2, 6; 3,5-Me2-C6H3 3, 7; 4-Bu-C6H4 4, 8) with tuneable electronic and steric properties were synthesized and characterized. 1-8 adopt binuclear structures in the solid state except for 5, while they are monomeric in CDCl3 solution. 1-8 are active catalysts for the ring opening polymerization (ROP) of lactide (LA) in CH2Cl2 at ambient temperature and the catalytic activity is controlled by the electronic and steric properties of the OAr substituent, yielding polymers with high average molecular weight (M n) and moderately controlled molecular weight distribution (MWDs). 1 and 5 showed a living polymerization character and kinetic studies on the ROP of L-LA with 1 and 5 proved first order dependencies on the monomer concentration. Homonuclear decoupled 1H-NMR analyses of polylactic acid (PLA) formed with rac-LA proved isotactic enrichment of the PLA microstructure.
Collapse
Affiliation(s)
- Swarup Ghosh
- Faculty of ChemistryUniversity of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE)Universitätsstr. 7, S07 S03 C30D-45141Essen
| | - Pascal M. Schäfer
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Dennis Dittrich
- Faculty of ChemistryUniversity of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE)Universitätsstr. 7, S07 S03 C30D-45141Essen
| | - Christoph Scheiper
- Faculty of ChemistryUniversity of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE)Universitätsstr. 7, S07 S03 C30D-45141Essen
| | - Phillip Steiniger
- Faculty of ChemistryUniversity of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE)Universitätsstr. 7, S07 S03 C30D-45141Essen
| | - Gerhard Fink
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Agnieszka N. Ksiazkiewicz
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
- DWI – Leibniz Institute for Interactive Materials e. V.Forckenbeckstraße 5042074AachenGermany
| | - Alexander Tjaberings
- Faculty of ChemistryUniversity of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE) NanoEnergieTechnikZentrumCarl-Benz-Str. 19947057Duisburg
| | - Christoph Wölper
- Faculty of ChemistryUniversity of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE)Universitätsstr. 7, S07 S03 C30D-45141Essen
| | - André H. Gröschel
- Faculty of ChemistryUniversity of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE) NanoEnergieTechnikZentrumCarl-Benz-Str. 19947057Duisburg
| | - Andrij Pich
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
- DWI – Leibniz Institute for Interactive Materials e. V.Forckenbeckstraße 5042074AachenGermany
- Aachen Maastricht Institute for Biobased Materials (AMIBM)Maastricht University, Brightlands Chemelot CampusUrmonderbaan 226167RD GeleenThe Netherlands
| | - Sonja Herres‐Pawlis
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Stephan Schulz
- Faculty of ChemistryUniversity of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE)Universitätsstr. 7, S07 S03 C30D-45141Essen
| |
Collapse
|
12
|
Jiang ZL, Zhao JP, Zhang GZ. Readily Prepared and Tunable Ionic Organocatalysts for Ring-opening Polymerization of Lactones. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2285-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Dharmaratne NU, Pothupitiya JU, Kiesewetter MK. The mechanistic duality of (thio)urea organocatalysts for ring-opening polymerization. Org Biomol Chem 2019; 17:3305-3313. [PMID: 30834919 DOI: 10.1039/c8ob03174f] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Among the various catalysts for ROP, H-bonding organocatalysts stand out in the precise level of reaction control they are able to render during ROP. The H-bonding class of organocatalysts are thought to effect ROP via dual activation of both monomer and chain end. (Thio)urea mediated ROP has experienced a renaissance as a new polymerization mechanism - mediated by imidate or thioimidate species - facilitates new modes of reactivity and new synthetic abilities. Indeed, the urea class of H-bond donors has been shown to be more active than their corresponding thioureas. The imidate mechanism remains highly active in polar solvents and exhibits remarkable control - and 'living' behavior - under solvent-free conditions, and a broad range of temperatures is accessible. The advancements in synthetic abilities have all evolved through a greater understanding of reaction mechanism. Through the continued synergistic advances of catalysis and material, the (thio)urea class of catalyst can find use in a host of potential applications, research and industrial environments.
Collapse
|
14
|
Zhou L, Xu G, Mahmood Q, Lv C, Wang X, Sun X, Guo K, Wang Q. N-Heterocyclic olefins and thioureas as an efficient cooperative catalyst system for ring-opening polymerization of δ-valerolactone. Polym Chem 2019. [DOI: 10.1039/c9py00018f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An organocatalytic ring-opening polymerization of δ-valerolactone has been developed.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Guangqiang Xu
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Qaiser Mahmood
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Chengdong Lv
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Xiaowu Wang
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Xitong Sun
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Kai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Qinggang Wang
- Key Laboratory of Biobased Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| |
Collapse
|
15
|
Coderre DN, Fastnacht KV, Wright TJ, Dharmaratne NU, Kiesewetter MK. H-Bonding Organocatalysts for Ring-Opening Polymerization at Elevated Temperatures. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02219] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Danielle N. Coderre
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Kurt V. Fastnacht
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Thomas J. Wright
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | | | - Matthew K. Kiesewetter
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
16
|
Wang B, Wei Y, Li Z, Pan L, Li Y. From Zn(C
6
F
5
)
2
to ZnEt
2
‐based Lewis Pairs: Significantly Improved Catalytic Activity and Monomer Adaptability for the Ring‐opening Polymerization of Lactones. ChemCatChem 2018. [DOI: 10.1002/cctc.201801488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Bin Wang
- Tianjin Key Lab Composite & Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 P.R.China
| | - Yuan Wei
- Tianjin Key Lab Composite & Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 P.R.China
| | - Zong‐Jun Li
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P.R. China
| | - Li Pan
- Tianjin Key Lab Composite & Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 P.R.China
| | - Yue‐Sheng Li
- Tianjin Key Lab Composite & Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 P.R.China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P.R. China
| |
Collapse
|
17
|
Pothupitiya JU, Hewawasam RS, Kiesewetter MK. Urea and Thiourea H-Bond Donating Catalysts for Ring-Opening Polymerization: Mechanistic Insights via (Non)linear Free Energy Relationships. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00321] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jinal U. Pothupitiya
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Rukshika S. Hewawasam
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Matthew K. Kiesewetter
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
18
|
Lin B, Waymouth RM. Organic Ring-Opening Polymerization Catalysts: Reactivity Control by Balancing Acidity. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00540] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Binhong Lin
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Robert M. Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
19
|
Chen J, Li M, He W, Tao Y, Wang X. Facile Organocatalyzed Synthesis of Poly(ε-lysine) under Mild Conditions. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02331] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jinlong Chen
- Key Laboratory of Polymer Ecomaterials,
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials,
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
| | - Wenjing He
- Key Laboratory of Polymer Ecomaterials,
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials,
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials,
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China
| |
Collapse
|
20
|
Pothupitiya JU, Dharmaratne NU, Jouaneh TMM, Fastnacht KV, Coderre DN, Kiesewetter MK. H-Bonding Organocatalysts for the Living, Solvent-Free Ring-Opening Polymerization of Lactones: Toward an All-Lactones, All-Conditions Approach. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01991] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jinal U. Pothupitiya
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | | | - Terra Marie M. Jouaneh
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Kurt V. Fastnacht
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Danielle N. Coderre
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Matthew K. Kiesewetter
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
21
|
Zabalov MV, Tiger RP. Specificities of application of the supermolecule method to the calculation of reaction mechanisms in a protonodonor medium. Ethylene carbonate aminolysis in methanol. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2124-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Specklin D, Hild F, Chen L, Thévenin L, Munch M, Dumas F, Le Bideau F, Dagorne S. Bifunctional Squaramides as Organocatalysts for Lactide Polymerization: Catalytic Performance and Comparison with Monofunctional Analogues. ChemCatChem 2017. [DOI: 10.1002/cctc.201700272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- David Specklin
- Institut de Chimie de Strasbourg; CNRS; Université de Strasbourg; 1 rue Blaise Pascal 67000 Strasbourg France
| | - Frédéric Hild
- Institut de Chimie de Strasbourg; CNRS; Université de Strasbourg; 1 rue Blaise Pascal 67000 Strasbourg France
| | - Li Chen
- Institut de Chimie de Strasbourg; CNRS; Université de Strasbourg; 1 rue Blaise Pascal 67000 Strasbourg France
- BioCIS, Univ. Paris-Sud; CNRS; Université Paris-Saclay; 92290 Châtenay-Malabry France
| | - Lucas Thévenin
- Institut de Chimie de Strasbourg; CNRS; Université de Strasbourg; 1 rue Blaise Pascal 67000 Strasbourg France
| | - Maxime Munch
- Institut de Chimie de Strasbourg; CNRS; Université de Strasbourg; 1 rue Blaise Pascal 67000 Strasbourg France
| | - Françoise Dumas
- BioCIS, Univ. Paris-Sud; CNRS; Université Paris-Saclay; 92290 Châtenay-Malabry France
| | - Franck Le Bideau
- BioCIS, Univ. Paris-Sud; CNRS; Université Paris-Saclay; 92290 Châtenay-Malabry France
| | - Samuel Dagorne
- Institut de Chimie de Strasbourg; CNRS; Université de Strasbourg; 1 rue Blaise Pascal 67000 Strasbourg France
| |
Collapse
|
23
|
Rostami A, Sadeh E, Ahmadi S. Exploration of tertiary aminosquaramide bifunctional organocatalyst in controlled/living ring-opening polymerization of l-lactide. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ali Rostami
- Department of Polymer and Material Chemistry; Shahid Beheshti University; Tehran 19839-4716 I. R. Iran
| | - Elahe Sadeh
- Department of Polymer and Material Chemistry; Shahid Beheshti University; Tehran 19839-4716 I. R. Iran
| | - Shaghayegh Ahmadi
- Department of Polymer and Material Chemistry; Shahid Beheshti University; Tehran 19839-4716 I. R. Iran
| |
Collapse
|
24
|
Dharmaratne NU, Pothupitiya JU, Bannin TJ, Kazakov OI, Kiesewetter MK. Triclocarban: Commercial Antibacterial and Highly Effective H-Bond Donating Catalyst for Ring-Opening Polymerization. ACS Macro Lett 2017; 6:421-425. [PMID: 35610842 DOI: 10.1021/acsmacrolett.7b00111] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The antibacterial compound, triclocarban (TCC), is shown to be a highly effective H-bond donating catalyst for ring-opening polymerization (ROP) when applied with an H-bond accepting base cocatalyst. These ROPs exhibit the characteristics of "living" polymerizations. TCC is shown to possess the high activity characteristic of urea (vs thiourea) H-bond donors. The urea class of H-bond donors is shown to remain highly active in H-bonding solvents, a trait that is not displayed by the corresponding thiourea H-bond donors. Two H-bond donating ureas that are electronically similar to TCC are evaluated for their efficacy in ROP, and a mechanism of action is proposed. This "off-the-shelf" H-bond donor is among the most active and most controlled organocatalysts for the ROP of lactones.
Collapse
Affiliation(s)
| | - Jinal U. Pothupitiya
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Timothy J. Bannin
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Oleg I. Kazakov
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Matthew K. Kiesewetter
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
25
|
Nzahou Ottou W, Conde-Mendizabal E, Pascual A, Wirotius AL, Bourichon D, Vignolle J, Robert F, Landais Y, Sotiropoulos JM, Miqueu K, Taton D. Organic Lewis Pairs Based on Phosphine and Electrophilic Silane for the Direct and Controlled Polymerization of Methyl Methacrylate: Experimental and Theoretical Investigations. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02205] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Winnie Nzahou Ottou
- Université
de Bordeaux, LCPO, UMR 5629, F-33600 Pessac, France
- CNRS, LCPO, UMR 5629, F-33600 Pessac, France
| | - Egoitz Conde-Mendizabal
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, Université de PAU & des Pays de l’Adour, CNRS, UNIV PAU & PAYS ADOUR, IPREM UMR 5254, 64000 PAU, France
| | - Ana Pascual
- Université
de Bordeaux, LCPO, UMR 5629, F-33600 Pessac, France
- CNRS, LCPO, UMR 5629, F-33600 Pessac, France
| | - Anne-Laure Wirotius
- Université
de Bordeaux, LCPO, UMR 5629, F-33600 Pessac, France
- CNRS, LCPO, UMR 5629, F-33600 Pessac, France
| | - Damien Bourichon
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, Université de PAU & des Pays de l’Adour, CNRS, UNIV PAU & PAYS ADOUR, IPREM UMR 5254, 64000 PAU, France
| | - Joan Vignolle
- Université
de Bordeaux, LCPO, UMR 5629, F-33600 Pessac, France
- CNRS, LCPO, UMR 5629, F-33600 Pessac, France
| | - Frédéric Robert
- Université
de Bordeaux, ISM, UMR 5255, 33400 Talence, France
- CNRS, ISM, UMR 5255, 33400 Talence, France
| | - Yannick Landais
- Université
de Bordeaux, ISM, UMR 5255, 33400 Talence, France
- CNRS, ISM, UMR 5255, 33400 Talence, France
| | - Jean-Marc Sotiropoulos
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, Université de PAU & des Pays de l’Adour, CNRS, UNIV PAU & PAYS ADOUR, IPREM UMR 5254, 64000 PAU, France
| | - Karinne Miqueu
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, Université de PAU & des Pays de l’Adour, CNRS, UNIV PAU & PAYS ADOUR, IPREM UMR 5254, 64000 PAU, France
| | - Daniel Taton
- Université
de Bordeaux, LCPO, UMR 5629, F-33600 Pessac, France
- CNRS, LCPO, UMR 5629, F-33600 Pessac, France
| |
Collapse
|
26
|
Liu J, Xu J, Li Z, Xu S, Wang X, Wang H, Guo T, Gao Y, Zhang L, Guo K. Squaramide and amine binary H-bond organocatalysis in polymerizations of cyclic carbonates, lactones, and lactides. Polym Chem 2017. [DOI: 10.1039/c7py01671a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple combinations of six squaramides and eight amines as co-catalysts were success in ROPs of cyclic monomers by H-bond donor and acceptor binary catalysis that established a general protocol.
Collapse
|
27
|
Naumann S, Wang D. Dual Catalysis Based on N-Heterocyclic Olefins for the Copolymerization of Lactones: High Performance and Tunable Selectivity. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02374] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Stefan Naumann
- Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Dongren Wang
- Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
28
|
Fastnacht KV, Spink SS, Dharmaratne NU, Pothupitiya JU, Datta PP, Kiesewetter ET, Kiesewetter MK. Bis- and Tris-Urea H-Bond Donors for Ring-Opening Polymerization: Unprecedented Activity and Control from an Organocatalyst. ACS Macro Lett 2016; 5:982-986. [PMID: 35607216 DOI: 10.1021/acsmacrolett.6b00527] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new class of H-bond donating ureas was developed for the ring-opening polymerization (ROP) of lactone monomers, and they exhibit dramatic rate acceleration versus previous H-bond mediated polymerization catalysts. The most active of these new catalysts, a tris-urea H-bond donor, is among the most active organocatalysts known for ROP, yet it retains the high selectivity of H-bond mediated organocatalysts. The urea cocatalyst, along with an H-bond accepting base, exhibits the characteristics of a "living" ROP, is highly active, in one case, accelerating a reaction from days to minutes, and remains active at low catalyst loadings. The rate acceleration exhibited by this H-bond donor occurs for all base cocatalysts examined. A mechanism of action is proposed, and the new catalysts are shown to accelerate small molecule transesterifications versus currently known monothiourea catalysts. It is no longer necessary to choose between a highly active or highly selective organocatalyst for ROP.
Collapse
Affiliation(s)
- Kurt V. Fastnacht
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Samuel S. Spink
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | | | - Jinal U. Pothupitiya
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Partha P. Datta
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Elizabeth T. Kiesewetter
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Matthew K. Kiesewetter
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
29
|
Fast and selective ring-opening polymerizations by alkoxides and thioureas. Nat Chem 2016; 8:1047-1053. [DOI: 10.1038/nchem.2574] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/13/2016] [Indexed: 02/08/2023]
|
30
|
Datta PP, Kiesewetter MK. Controlled Organocatalytic Ring-Opening Polymerization of ε-Thionocaprolactone. Macromolecules 2016; 49:774-780. [PMID: 27182087 PMCID: PMC4862612 DOI: 10.1021/acs.macromol.6b00136] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
For the first time, the controlled ring-opening polymerization (ROP) of ε-thionocaprolactone (tnCL) is conducted. The organocatalytic ROP of tnCL occurs without carbonyl scrambling, leading to homopoly(ε-thionocaprolactone) (PtnCL). The ROP by base catalysts alone is proposed to proceed via a nucleophilic mechanism, while the addition of an H-bond donating thiourea (TU) is shown to provide excellent reaction control. The increased reaction control provided by the TU occurs in the virtual absence of binding between tnCL and TU, and a mechanistic account for this observation is discussed. The monomer ring strain is measured and found to be similar to δ-valerolactone (VL). Copolymers with VL are synthesized, and the resulting analysis of the copolymer materials properties provides the only known physical characterizations of poly(thio(no)ester-co-ester)s.
Collapse
Affiliation(s)
- Partha P Datta
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Matthew K Kiesewetter
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
31
|
Chuang WJ, Huang YT, Chen YH, Lin YS, Lu WY, Lai YC, Chiang MY, Hsu SCN, Chen HY. Synthesis, characterization, and catalytic activity of sodium ketminiate complexes toward the ring-opening polymerization of l-lactide. RSC Adv 2016. [DOI: 10.1039/c6ra00373g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Na complexes bearing ketiminate ligands revealed the greater catalytic activity and polymer controllability than that of Na complexes bearing Schiff base ligands.
Collapse
Affiliation(s)
- Wan-Jung Chuang
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung 80708
- Republic of China
| | - Yen-Tzu Huang
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung 80708
- Republic of China
| | - Yu-Hsieh Chen
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung 80708
- Republic of China
| | - Yu-Shan Lin
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung 80708
- Republic of China
| | - Wei-Yi Lu
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung 80708
- Republic of China
| | - Yi-Chun Lai
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung 80708
- Republic of China
| | - Michael Y. Chiang
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung 80708
- Republic of China
- Department of Chemistry
| | - Sodio C. N. Hsu
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung 80708
- Republic of China
| | - Hsuan-Ying Chen
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung 80708
- Republic of China
| |
Collapse
|
32
|
Dai Z, Cui Y, Chen C, Wu J. Photoswitchable ring-opening polymerization of lactide catalyzed by azobenzene-based thiourea. Chem Commun (Camb) 2016; 52:8826-9. [DOI: 10.1039/c6cc04090j] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An azobenzene-based thiourea compound 1 as a catalyst was successfully used in the ring-opening polymerization of rac-lactide. The reactivity of a catalytic polymerization system using photoresponsive azobenzene-based thiourea/PMDETA as a catalyst could be switched between slow and fast states by alternating exposure to UV and ambient light.
Collapse
Affiliation(s)
- Zhongran Dai
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou 730000
- People's Republic of China
| | - Yaqin Cui
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou 730000
- People's Republic of China
| | - Changjuan Chen
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou 730000
- People's Republic of China
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou 730000
- People's Republic of China
| |
Collapse
|
33
|
Naumann S, Scholten PBV, Wilson JA, Dove AP. Dual Catalysis for Selective Ring-Opening Polymerization of Lactones: Evolution toward Simplicity. J Am Chem Soc 2015; 137:14439-45. [DOI: 10.1021/jacs.5b09502] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefan Naumann
- Department
of Chemistry, University of Warwick, CV4 7AL Coventry, U.K
| | | | - James A. Wilson
- Department
of Chemistry, University of Warwick, CV4 7AL Coventry, U.K
| | - Andrew P. Dove
- Department
of Chemistry, University of Warwick, CV4 7AL Coventry, U.K
| |
Collapse
|