1
|
Beauseroy H, Grazon C, Antoine S, Badreldin M, Salas-Ambrosio P, Harrisson S, Garanger E, Lecommandoux S, Bonduelle C. Polypeptide- and Protein-Based Conjugate Nanoparticles via Aqueous Ring-Opening Polymerization-Induced Self-Assembly (ROPISA). Macromol Rapid Commun 2024; 45:e2400079. [PMID: 38662380 DOI: 10.1002/marc.202400079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Protein-polymer conjugates and polymeric nanomaterials hold great promise in many applications including biomaterials, medicine, or nanoelectronics. In this work, the first polymerization-induced self-assembly (PISA) approach performed in aqueous medium enabling protein-polymer conjugates and nanoparticles entirely composed of amino acids is presented by using ring-opening polymerization (ROP). It is indeed shown that aqueous ring-opening polymerization-induced self-assembly (ROPISA) can be used with protein or peptidic macroinitiators without prior chemical modification and afford the simple preparation of nanomaterials with protein-like property, for example, to implement biomimetic thermoresponsivity in drug delivery.
Collapse
Affiliation(s)
- Hannah Beauseroy
- LCPO, Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5629, Pessac, F-33600, France
| | - Chloe Grazon
- LCPO, Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5629, Pessac, F-33600, France
- ISM, Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5255, Talence, F-33400, France
| | - Segolene Antoine
- LCPO, Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5629, Pessac, F-33600, France
| | - Mostafa Badreldin
- LCPO, Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5629, Pessac, F-33600, France
| | - Pedro Salas-Ambrosio
- LCPO, Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5629, Pessac, F-33600, France
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA, 90095-1569, USA
| | - Simon Harrisson
- LCPO, Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5629, Pessac, F-33600, France
| | - Elisabeth Garanger
- LCPO, Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5629, Pessac, F-33600, France
| | | | - Colin Bonduelle
- LCPO, Univ. Bordeaux, CNRS, Bordeaux INP, UMR 5629, Pessac, F-33600, France
| |
Collapse
|
2
|
Levêque M, Lecommandoux S, Garanger E. Thermoresponsive Core-cross-linked Nanoparticles from HA- b-ELP Diblock Copolymers. Biomacromolecules 2024; 25:3011-3017. [PMID: 38689515 DOI: 10.1021/acs.biomac.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Stabilization against the dilution-dependent disassembly of self-assembled nanoparticles is a requirement for in vivo application. Herein, we propose a simple and biocompatible cross-linking reaction for the stabilization of a series of nanoparticles formed by the self-assembly of amphiphilic HA-b-ELP block copolymers, through the alkylation of methionine residues from the ELP block with diglycidyl ether compounds. The core-cross-linked nanoparticles retain their colloidal properties, with a spherical core-shell morphology, while maintaining thermoresponsive behavior. As such, instead of a reversible disassembly when non-cross-linked, a reversible swelling of nanoparticles' core and increase of hydrodynamic diameter are observed with lowering of the temperature.
Collapse
Affiliation(s)
- Manon Levêque
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France
| | | | - Elisabeth Garanger
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France
| |
Collapse
|
3
|
Walter V, Schmatko T, Muller P, Schroder AP, MacEwan SR, Chilkoti A, Marques CM. Negative lipid membranes enhance the adsorption of TAT-decorated elastin-like polypeptide micelles. Biophys J 2024; 123:901-908. [PMID: 38449310 PMCID: PMC10995422 DOI: 10.1016/j.bpj.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/07/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
A cell-penetrating peptide (CPP) is a short amino-acid sequence capable of efficiently translocating across the cellular membrane of mammalian cells. However, the potential of CPPs as a delivery vector is hampered by the strong reduction of its translocation efficiency when it bears an attached molecular cargo. To overcome this problem, we used previously developed diblock copolymers of elastin-like polypeptides (ELPBCs), which we end functionalized with TAT (transactivator of transcription), an archetypal CPP built from a positively charged amino acid sequence of the HIV-1 virus. These ELPBCs self-assemble into micelles at a specific temperature and present the TAT peptide on their corona. These micelles can recover the lost membrane affinity of TAT and can trigger interactions with the membrane despite the presence of a molecular cargo. Herein, we study the influence of membrane surface charge on the adsorption of TAT-functionalized ELP micelles onto giant unilamellar vesicles (GUVs). We show that the TAT-ELPBC micelles show an increased binding constant toward negatively charged membranes compared to neutral membranes, but no translocation is observed. The affinity of the TAT-ELPBC micelles for the GUVs displays a stepwise dependence on the lipid charge of the GUV, which, to our knowledge, has not been reported previously for interactions between peptides and lipid membranes. By unveiling the key steps controlling the interaction of an archetypal CPP with lipid membranes, through regulation of the charge of the lipid bilayer, our results pave the way for a better design of delivery vectors based on CPPs.
Collapse
Affiliation(s)
- Vivien Walter
- Institut Charles Sadron, CNRS UPR22 & Université de Strasbourg, Strasbourg, France
| | - Tatiana Schmatko
- Institut Charles Sadron, CNRS UPR22 & Université de Strasbourg, Strasbourg, France.
| | - Pierre Muller
- Institut Charles Sadron, CNRS UPR22 & Université de Strasbourg, Strasbourg, France
| | | | - Sarah R MacEwan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Carlos M Marques
- University of Lyon, ENS-Lyon, CNRS UMR 5182, Chem. Lab, Lyon, France.
| |
Collapse
|
4
|
Petrovskii VS, Zholudev SI, Potemkin II. Linear and ring polypeptides complexed with oppositely charged surfactants: the cohesion of the complexes as revealed in atomistic simulations. SOFT MATTER 2024; 20:388-396. [PMID: 38100081 DOI: 10.1039/d3sm01247f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The use of linear supercharged unfolded polypeptides (SUPs) and oppositely charged surfactants in aqueous solution has demonstrated impressive adhesive properties. These substances possess biocompatibility, biodegradability and other necessary properties for practical application as a biomedical glue in wound repair. The success of these substances, coupled with limited knowledge about such systems, provides hope for enhancing the performance of the final product. One potential approach involves altering the topology of the polypeptide chain. In this article, we conduct a comparative analysis to examine the behavior of the ring and linear chains of a polypeptide in aqueous solution. This analysis utilizes full-atomic computer modeling to monitor the properties of the chains. We investigate the temperature dependence of the shape and size of individual polypeptides in the solution, as well as the formation of complexes via mixing the polypeptide chains with oppositely charged sodium dodecylbenzene sulfonate (SDBS) surfactant molecules in a stoichiometric ratio. Additionally, we explore the cohesive properties of the resulting complex through power experiments involving the extraction of single polypeptide chains out of the SUP-SDBS complexes.
Collapse
Affiliation(s)
- Vladislav S Petrovskii
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Stepan I Zholudev
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| |
Collapse
|
5
|
Grazon C, Garanger E, Lalanne P, Ibarboure E, Galagan JE, Grinstaff MW, Lecommandoux S. Transcription-Factor-Induced Aggregation of Biomimetic Oligonucleotide- b-Protein Micelles. Biomacromolecules 2023; 24:5027-5034. [PMID: 37877162 DOI: 10.1021/acs.biomac.3c00662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Polymeric micelles and especially those based on natural diblocks are of particular interest due to their advantageous properties in terms of molecular recognition, biocompatibility, and biodegradability. We herein report a facile and straightforward synthesis of thermoresponsive elastin-like polypeptide (ELP) and oligonucleotide (ON) diblock bioconjugates, ON-b-ELP, through copper-catalyzed azide-alkyne cycloaddition. The resulting thermosensitive diblock copolymer self-assembles above its critical micelle temperature (CMT ∼30 °C) to form colloidally stable micelles of ∼50 nm diameter. The ON-b-ELP micelles hybridize with an ON complementary strand and maintain their size and stability. Next, we describe the capacity of these micelles to bind proteins, creating more complex structures using the classic biotin-streptavidin pairing and the specific recognition between a transcription factor protein and the ON strand. In both instances, the micelles are intact, form larger structures, and retain their sensitivity to temperature.
Collapse
Affiliation(s)
- Chloé Grazon
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence F-33400, France
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Elisabeth Garanger
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France
| | - Pierre Lalanne
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France
| | - Emmanuel Ibarboure
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France
| | - James E Galagan
- Department of Microbiology, Boston University, Boston, Massachusetts 02118, United States
| | - Mark W Grinstaff
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | | |
Collapse
|
6
|
Ji J, Hossain MS, Krueger EN, Zhang Z, Nangia S, Carpentier B, Martel M, Nangia S, Mozhdehi D. Lipidation Alters the Structure and Hydration of Myristoylated Intrinsically Disordered Proteins. Biomacromolecules 2023; 24:1244-1257. [PMID: 36757021 PMCID: PMC10017028 DOI: 10.1021/acs.biomac.2c01309] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/25/2023] [Indexed: 02/10/2023]
Abstract
Lipidated proteins are an emerging class of hybrid biomaterials that can integrate the functional capabilities of proteins into precisely engineered nano-biomaterials with potential applications in biotechnology, nanoscience, and biomedical engineering. For instance, fatty-acid-modified elastin-like polypeptides (FAMEs) combine the hierarchical assembly of lipids with the thermoresponsive character of elastin-like polypeptides (ELPs) to form nanocarriers with emergent temperature-dependent structural (shape or size) characteristics. Here, we report the biophysical underpinnings of thermoresponsive behavior of FAMEs using computational nanoscopy, spectroscopy, scattering, and microscopy. This integrated approach revealed that temperature and molecular syntax alter the structure, contact, and hydration of lipid, lipidation site, and protein, aligning with the changes in the nanomorphology of FAMEs. These findings enable a better understanding of the biophysical consequence of lipidation in biology and the rational design of the biomaterials and therapeutics that rival the exquisite hierarchy and capabilities of biological systems.
Collapse
Affiliation(s)
- Jingjing Ji
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Md Shahadat Hossain
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Emily N. Krueger
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Zhe Zhang
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Shivangi Nangia
- Department
of Chemistry, University of Hartford, West Hartford, Connecticut 06117, United States
| | - Britnie Carpentier
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Mae Martel
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Shikha Nangia
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
7
|
Morozova TI, García NA, Matsarskaia O, Roosen-Runge F, Barrat JL. Structural and Dynamical Properties of Elastin-Like Peptides near Their Lower Critical Solution Temperature. Biomacromolecules 2023; 24:1912-1923. [PMID: 36877869 DOI: 10.1021/acs.biomac.3c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Elastin-like peptides (ELPs) are artificially derived intrinsically disordered proteins (IDPs) mimicking the hydrophobic repeat unit in the protein elastin. ELPs are characterized by a lower critical solution temperature (LCST) in aqueous media. Here, we investigate the sequence GVG(VPGVG)3 over a wide range of temperatures (below, around, and above the LCST) and peptide concentrations employing all-atom molecular dynamics simulations, where we focus on the role of intra- and interpeptide interactions. We begin by investigating the structural properties of a single peptide that demonstrates a hydrophobic collapse with temperature, albeit moderate, because the sequence length is short. We observe a change in the interaction between two peptides from repulsive to attractive with temperature by evaluating the potential of mean force, indicating an LCST-like behavior. Next, we explore dynamical and structural properties of peptides in multichain systems. We report the formation of dynamical aggregates with coil-like conformation, in which valine central residues play an important role. Moreover, the lifetime of contacts between chains strongly depends on the temperature and can be described by a power-law decay that is consistent with the LCST-like behavior. Finally, the peptide translational and internal motion are slowed by an increase in the peptide concentration and temperature.
Collapse
Affiliation(s)
| | - Nicolás A García
- Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Av. L. N. Alem 1253, B8000CPB Bahía Blanca, Argentina
| | - Olga Matsarskaia
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Felix Roosen-Runge
- Department of Biomedical Science and Biofilms Research Center for Biointerfaces (BRCB), Malmö University, 20506 Malmö, Sweden
| | | |
Collapse
|
8
|
López
Barreiro D, Folch-Fortuny A, Muntz I, Thies JC, Sagt CM, Koenderink GH. Sequence Control of the Self-Assembly of Elastin-Like Polypeptides into Hydrogels with Bespoke Viscoelastic and Structural Properties. Biomacromolecules 2023; 24:489-501. [PMID: 36516874 PMCID: PMC9832484 DOI: 10.1021/acs.biomac.2c01405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The biofabrication of structural proteins with controllable properties via amino acid sequence design is interesting for biomedicine and biotechnology, yet a complete framework that connects amino acid sequence to material properties is unavailable, despite great progress to establish design rules for synthesizing peptides and proteins with specific conformations (e.g., unfolded, helical, β-sheets, or β-turns) and intermolecular interactions (e.g., amphipathic peptides or hydrophobic domains). Molecular dynamics (MD) simulations can help in developing such a framework, but the lack of a standardized way of interpreting the outcome of these simulations hinders their predictive value for the design of de novo structural proteins. To address this, we developed a model that unambiguously classifies a library of de novo elastin-like polypeptides (ELPs) with varying numbers and locations of hydrophobic/hydrophilic and physical/chemical-cross-linking blocks according to their thermoresponsiveness at physiological temperature. Our approach does not require long simulation times or advanced sampling methods. Instead, we apply (un)supervised data analysis methods to a data set of molecular properties from relatively short MD simulations (150 ns). We also experimentally investigate hydrogels of those ELPs from the library predicted to be thermoresponsive, revealing several handles to tune their mechanical and structural properties: chain hydrophilicity/hydrophobicity or block distribution control the viscoelasticity and thermoresponsiveness, whereas ELP concentration defines the network permeability. Our findings provide an avenue to accelerate the design of de novo ELPs with bespoke phase behavior and material properties.
Collapse
Affiliation(s)
- Diego López
Barreiro
- DSM
Biosciences and Process Innovation, DSM, Alexander Fleminglaan 1, 2613 AXDelft, The Netherlands
| | - Abel Folch-Fortuny
- DSM
Biodata and Translation, DSM, Alexander Fleminglaan 1, 2613 AXDelft, The Netherlands
| | - Iain Muntz
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZDelft, The Netherlands
| | - Jens C. Thies
- DSM
Biomedical, DSM, Urmonderbaan
22, 6160 BB, Geleen, The Netherlands,E-mail:
| | - Cees M.J. Sagt
- DSM
Biosciences and Process Innovation, DSM, Alexander Fleminglaan 1, 2613 AXDelft, The Netherlands,E-mail:
| | - Gijsje H. Koenderink
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZDelft, The Netherlands,E-mail:
| |
Collapse
|
9
|
Zhang T, Peruch F, Weber A, Bathany K, Fauquignon M, Mutschler A, Schatz C, Garbay B. Solution behavior and encapsulation properties of fatty acid-elastin-like polypeptide conjugates. RSC Adv 2023; 13:2190-2201. [PMID: 36712617 PMCID: PMC9835928 DOI: 10.1039/d2ra06603c] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Developing new biomaterials is an active research area owing to their applications in regenerative medicine, tissue engineering and drug delivery. Elastin-like polypeptides (ELPs) are good candidates for these applications because they are biosourced, biocompatible and biodegradable. With the aim of developing ELP-based micelles for drug delivery applications we have synthesized 15 acyl-ELP compounds by conjugating myristic, palmitic, stearic, oleic or linoleic acid to the N-terminus of three ELPs differing in molar mass. The ELP-fatty acid conjugates have interesting solution behavior. They form micelles at low temperatures and aggregate above the cloud point temperature (Tcp). The critical micelle concentration depends on the fatty acid nature while the micelle size is mainly determined by the ELP block length. We were able to show that ELPs were better hydrated in the micelles than in their individual state in solution. The micelles are stable in phosphate-buffered saline at temperatures below the Tcp, which can vary between 20 °C and 38 °C depending on the length or hydrophilicity of the ELP. Acyl-ELP micelles were loaded with the small hydrophobic molecule Nile red. The encapsulation efficiency and release kinetics showed that the best loading conditions were achieved with the largest ELP conjugated to stearic acid.
Collapse
Affiliation(s)
- Tingting Zhang
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629F-33600 PessacFrance
| | - Frédéric Peruch
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629F-33600 PessacFrance
| | - Amélie Weber
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629F-33600 PessacFrance
| | - Katell Bathany
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN UMR 5248F-33600 PessacFrance
| | - Martin Fauquignon
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629F-33600 PessacFrance
| | - Angela Mutschler
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629F-33600 PessacFrance
| | - Christophe Schatz
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629F-33600 PessacFrance
| | - Bertrand Garbay
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629F-33600 PessacFrance
| |
Collapse
|
10
|
Levêque M, Xiao Y, Durand L, Massé L, Garanger E, Lecommandoux S. Aqueous synthesis and self-assembly of bioactive and thermo-responsive HA- b-ELP bioconjugates. Biomater Sci 2022; 10:6365-6376. [PMID: 36168976 DOI: 10.1039/d2bm01149b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The design of synthetic (bio)macromolecules that combine biocompatibility, self-assembly and bioactivity properties at the molecular level is an intense field of research for biomedical applications such as (nano)medicine. In this contribution, we have designed and synthesized a library of bioactive and thermo-responsive bioconjugates from elastin-like polypeptides (ELPs) and hyaluronic acid (HA) in order to access bioactive self-assembled nanoparticles. These were prepared by a simple synthetic and purification strategy, compatible with the requirements for biological applications and industrial scale-up. A series of 9 HA-b-ELP bioconjugates with different compositions and block lengths was synthesized under aqueous conditions by strain-promoted azide-alkyne cycloaddition (SPAAC), avoiding the use of catalysts, co-reactants and organic solvents, and isolated by a simple centrifugation step. An extensive physico-chemical study was then performed on the whole library of bioconjugates in an attempt to establish structure-property relationships. In particular, the determination of the critical conditions for thermally driven self-assembly was carried out upon temperature (CMT) and concentration (CMC) gradients, leading to a phase diagram for each of these bioconjugates. These parameters and the size of nanoparticles were found to depend on the chemical composition of the bioconjugates, namely on the respective size of individual blocks. Understanding the mechanism underlying this dependency is a real asset for designing more effective experiments: with key criteria defined (e.g. concentration, temperature, salinity, and biological target), the composition of the best candidates can be rationalized. In particular, four of the bioconjugates (HA4.6k-ELPn80 or n100 and HA24k-ELPn80 or n100) were found to self-assemble into well-defined spherical core-shell nanoparticles, with a negative surface charge due to the HA block exposed at the surface, a hydrodynamic diameter between 40 and 200 nm under physiological conditions and a good stability over time at 37 °C. We therefore propose here a versatile and simple design of smart, controllable, and bioactive nanoparticles that present different behaviors depending on the diblocks' composition.
Collapse
Affiliation(s)
- Manon Levêque
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France.
| | - Ye Xiao
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France.
| | - Laura Durand
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France.
| | - Louise Massé
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France.
| | - Elisabeth Garanger
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France.
| | | |
Collapse
|
11
|
Bulutoglu B, Acun A, Deng SL, Mert S, Lupon E, Lellouch AG, Cetrulo CL, Uygun BE, Yarmush ML. Combinatorial Use of Therapeutic ELP-Based Micelle Particles in Tissue Engineering. Adv Healthc Mater 2022; 11:e2102795. [PMID: 35373501 PMCID: PMC9262838 DOI: 10.1002/adhm.202102795] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/19/2022] [Indexed: 11/10/2022]
Abstract
Elastin-like peptides (ELPs) are a versatile platform for tissue engineering and drug delivery. Here, micelle forming ELP chains are genetically fused to three therapeutic molecules, keratinocyte growth factor (KGF), stromal cell-derived growth factor 1 (SDF1), and cathelicidin (LL37), to be used in wound healing. Chronic wounds represent a growing problem worldwide. A combinatorial therapy approach targeting different aspects of wound healing would be beneficial, providing a controlled and sustained release of active molecules, while simultaneously protecting these therapeutics from the surrounding harsh wound environment. The results of this study demonstrate that the conjugation of the growth factors KGF and SDF1 and the antimicrobial peptide LL37 to ELPs does not affect the micelle structure and that all three therapeutic moieties retain their bioactivity in vitro. Importantly, when the combination of these micelle ELP nanoparticles are applied to wounds in diabetic mice, over 90 % wound closure is observed, which is significantly higher than when the therapeutics are applied in their naked forms. The application of the nanoparticles designed here is the first report of targeting different aspect of wound healing synergistically.
Collapse
Affiliation(s)
- Beyza Bulutoglu
- Center for Engineering in Medicine and SurgeryMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Shriners Hospitals for Children‐BostonBostonMA02114USA
- Present address:
Department of Protein ChemistryGenentechSouth San FranciscoCA94404USA
| | - Aylin Acun
- Center for Engineering in Medicine and SurgeryMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Shriners Hospitals for Children‐BostonBostonMA02114USA
- Department of Biomedical EngineeringWidener UniversityChesterPA19013USA
| | - Sarah L. Deng
- Center for Engineering in Medicine and SurgeryMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Shriners Hospitals for Children‐BostonBostonMA02114USA
| | - Safak Mert
- Center for Engineering in Medicine and SurgeryMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Shriners Hospitals for Children‐BostonBostonMA02114USA
| | - Elise Lupon
- Shriners Hospitals for Children‐BostonBostonMA02114USA
- Vascularized Composite Allotransplantation LaboratoryCenter for Transplantation SciencesMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
- Division of Plastic and Reconstructive SurgeryMassachusetts General HospitalBostonMA02114USA
| | - Alexandre G. Lellouch
- Shriners Hospitals for Children‐BostonBostonMA02114USA
- Vascularized Composite Allotransplantation LaboratoryCenter for Transplantation SciencesMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
- Division of Plastic and Reconstructive SurgeryMassachusetts General HospitalBostonMA02114USA
- Department of Plastic SurgeryEuropean George Pompidou HospitalUniversity of ParisParisFrance
| | - Curtis L. Cetrulo
- Shriners Hospitals for Children‐BostonBostonMA02114USA
- Vascularized Composite Allotransplantation LaboratoryCenter for Transplantation SciencesMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
- Division of Plastic and Reconstructive SurgeryMassachusetts General HospitalBostonMA02114USA
- Department of Plastic SurgeryEuropean George Pompidou HospitalUniversity of ParisParisFrance
| | - Basak E. Uygun
- Center for Engineering in Medicine and SurgeryMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Shriners Hospitals for Children‐BostonBostonMA02114USA
| | - Martin L. Yarmush
- Center for Engineering in Medicine and SurgeryMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Shriners Hospitals for Children‐BostonBostonMA02114USA
- Department of Biomedical EngineeringRutgers UniversityPiscatawayNJ08854USA
| |
Collapse
|
12
|
Klass SH, Gleason JM, Omole AO, Onoa B, Bustamante CJ, Francis MB. Preparation of Bioderived and Biodegradable Surfactants Based on an Intrinsically Disordered Protein Sequence. Biomacromolecules 2022; 23:1462-1470. [PMID: 35238203 DOI: 10.1021/acs.biomac.2c00051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Surfactants, block copolymers, and other types of micellar systems are used in a wide variety of biomedical and industrial processes. However, most commonly used surfactants are synthetically derived and pose environmental and toxicological concerns throughout their product life cycle. Because of this, bioderived and biodegradable surfactants are promising alternatives. For biosurfactants to be implemented industrially, they need to be produced on a large scale and also have tailorable properties that match those afforded by the polymerization of synthetic surfactants. In this paper, a scalable and versatile production method for biosurfactants based on a hydrophilic intrinsically disordered protein (IDP) sequence with a genetically engineered hydrophobic domain is used to study variables that impact their physicochemical and self-assembling properties. These amphiphilic sequences were found to self-assemble into micelles over a broad range of temperatures, pH values, and ionic strengths. To investigate the role of the IDP hydrophilic domain on self-assembly, variants with increased overall charges and systematically decreased IDP domain lengths were produced and examined for their sizes, morphologies, and critical micelle concentrations (CMCs). The results of these studies indicate that decreasing the length of the IDP domain and consequently the molecular weight and hydrophilic fraction leads to smaller micelles. In addition, significantly increasing the amount of charged residues in the hydrophilic IDP domain results in micelles of similar sizes but with higher CMC values. This represents an initial step in developing a quantitative model for the future engineering of biosurfactants based on this IDP sequence.
Collapse
Affiliation(s)
- Sarah H Klass
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Jamie M Gleason
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Anthony O Omole
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Bibiana Onoa
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| | - Carlos J Bustamante
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States.,Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Matthew B Francis
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Dai M, Georgilis E, Goudounet G, Garbay B, Pille J, van Hest JCM, Schultze X, Garanger E, Lecommandoux S. Refining the Design of Diblock Elastin-Like Polypeptides for Self-Assembly into Nanoparticles. Polymers (Basel) 2021; 13:1470. [PMID: 34062852 PMCID: PMC8125372 DOI: 10.3390/polym13091470] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Diblock copolymers based-on elastin-like polypeptide (ELP) have the potential to undergo specific phase transitions when thermally stimulated. This ability is especially suitable to form carriers, micellar structures for instance, for delivering active cargo molecules. Here, we report the design and study of an ELP diblock library based on ELP-[M1V3-i]-[I-j]. First, ELP-[M1V3-i]-[I-j] (i = 20, 40, 60; j = 20, 90) that showed a similar self-assembly propensity (unimer-to-aggregate transition) as their related monoblocks ELP-[M1V3-i] and ELP-[I-j]. By selectively oxidizing methionines of ELP-[M1V3-i] within the different diblocks structures, we have been able to access a thermal phase transition with three distinct regimes (unimers, micelles, aggregates) characteristic of well-defined ELP diblocks.
Collapse
Affiliation(s)
- Michèle Dai
- University Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600 Pessac, France; (M.D.); (E.G.); (G.G.); (B.G.)
- L’Oréal Recherche Avancée, 1 Avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France;
| | - Evangelos Georgilis
- University Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600 Pessac, France; (M.D.); (E.G.); (G.G.); (B.G.)
- Current affiliation E.G. (Evangelos Georgilis): CIC nanoGUNE (BRTA), Tolosa Hiribidea 76, 20018 Donostia-San Sebastián, Spain
| | - Guillaume Goudounet
- University Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600 Pessac, France; (M.D.); (E.G.); (G.G.); (B.G.)
| | - Bertrand Garbay
- University Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600 Pessac, France; (M.D.); (E.G.); (G.G.); (B.G.)
| | - Jan Pille
- Bio-organic Chemistry Lab, Eindhoven University of Technology, P.O. Box 513 (STO 3.31), 5600 MB Eindhoven, The Netherlands; (J.P.); (J.C.M.v.H.)
| | - Jan C. M. van Hest
- Bio-organic Chemistry Lab, Eindhoven University of Technology, P.O. Box 513 (STO 3.31), 5600 MB Eindhoven, The Netherlands; (J.P.); (J.C.M.v.H.)
| | - Xavier Schultze
- L’Oréal Recherche Avancée, 1 Avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France;
| | - Elisabeth Garanger
- University Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600 Pessac, France; (M.D.); (E.G.); (G.G.); (B.G.)
| | - Sébastien Lecommandoux
- University Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600 Pessac, France; (M.D.); (E.G.); (G.G.); (B.G.)
| |
Collapse
|
14
|
Laaß K, Quiroz FG, Hunold J, Roberts S, Chilkoti A, Hinderberger D. Nanoscopic Dynamics Dictate the Phase Separation Behavior of Intrinsically Disordered Proteins. Biomacromolecules 2021; 22:1015-1025. [PMID: 33403854 DOI: 10.1021/acs.biomac.0c01768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many intrinsically disordered proteins (IDPs) in nature may undergo liquid-liquid phase separation to assemble membraneless organelles with varied liquid-like properties and stability/dynamics. While solubility changes underlie these properties, little is known about hydration dynamics in phase-separating IDPs. Here, by studying IDP polymers of similar composition but distinct liquid-like dynamics and stability upon separation, namely, thermal hysteresis, we probe at a nanoscopic level hydration/dehydration dynamics in IDPs as they reversibly switch between phase separation states. Using continuous-wave electron paramagnetic resonance (CW EPR) spectroscopy, we observe distinct backbone and amino acid side-chain hydration dynamics in these IDPs. This nanoscopic view reveals that side-chain rehydration creates a dynamic water shield around the main-chain backbone that effectively and counterintuitively prevents water penetration and governs IDP solubility. We find that the strength of this superficial water shell is a sequence feature of IDPs that encodes for the stability of their phase-separated assemblies. Our findings expose and offer an initial understanding of how the complexity of nanoscopic water-IDP interactions dictate their rich phase separation behavior.
Collapse
Affiliation(s)
- Katharina Laaß
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Felipe García Quiroz
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, United States
| | - Johannes Hunold
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Stefan Roberts
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, United States
| | - Dariush Hinderberger
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
15
|
Chimeric poly(N-isopropylacrylamide)-b-poly(3,4-dihydroxy-L-phenylalanine) nanocarriers for temperature/pH dual-stimuli-responsive theranostic application. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Rosselin M, Xiao Y, Belhomme L, Lecommandoux S, Garanger E. Expanding the Toolbox of Chemoselective Modifications of Protein-Like Polymers at Methionine Residues. ACS Macro Lett 2019; 8:1648-1653. [PMID: 35619386 DOI: 10.1021/acsmacrolett.9b00862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Selective modifications at methionyl residues in proteins have attracted particular attention in recent years. Previously described methods to chemoselectively modify the methionine side chain in elastin-like polypeptides (ELPs) involved nucleophilic addition using alkyl halides or epoxides yielding a sulfonium group with a positive charge strongly affecting ELPs' physicochemical properties, in particular their thermal responsiveness. We herein explored the recently reported ReACT method (Redox-Activated Chemical Tagging) based on the use of oxaziridine derivatives, yielding an uncharged sulfimide as an alternative route for chemoselective modifications of methionine-containing ELPs in aqueous medium. The different synthetic strategies are herein compared in order to provide a furnished toolbox for further biorthogonal postmodifications of any protein polymers.
Collapse
Affiliation(s)
- Marie Rosselin
- Universite Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Ye Xiao
- Universite Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Ludovic Belhomme
- Universite Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | | - Elisabeth Garanger
- Universite Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| |
Collapse
|
17
|
Xiao Y, Chinoy ZS, Pecastaings G, Bathany K, Garanger E, Lecommandoux S. Design of Polysaccharide-b-Elastin-Like Polypeptide Bioconjugates and Their Thermoresponsive Self-Assembly. Biomacromolecules 2019; 21:114-125. [DOI: 10.1021/acs.biomac.9b01058] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ye Xiao
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - Zoeisha S. Chinoy
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - Gilles Pecastaings
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - Katell Bathany
- Université de Bordeaux, CNRS, Bordeaux INP, Chimie et Biologie des Membranes et des Nano-objets (UMR 5248), Allée Geoffroy
Saint Hilaire, F-33600, Pessac, France
| | - Elisabeth Garanger
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | | |
Collapse
|
18
|
Hill LK, Frezzo JA, Katyal P, Hoang DM, Gironda ZBY, Xu C, Xie X, Delgado-Fukushima E, Wadghiri YZ, Montclare JK. Protein-Engineered Nanoscale Micelles for Dynamic 19F Magnetic Resonance and Therapeutic Drug Delivery. ACS NANO 2019; 13:2969-2985. [PMID: 30758189 PMCID: PMC6945506 DOI: 10.1021/acsnano.8b07481] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Engineered proteins provide an interesting template for designing fluorine-19 (19F) magnetic resonance imaging (MRI) contrast agents, yet progress has been hindered by the unpredictable relaxation properties of fluorine. Herein, we present the biosynthesis of a protein block copolymer, termed "fluorinated thermoresponsive assembled protein" (F-TRAP), which assembles into a monodisperse nanoscale micelle with interesting 19F NMR properties and the ability to encapsulate and release small therapeutic molecules, imparting potential as a diagnostic and therapeutic (theranostic) agent. The assembly of the F-TRAP micelle, composed of a coiled-coil pentamer corona and a hydrophobic, thermoresponsive elastin-like polypeptide core, results in a drastic depression in spin-spin relaxation ( T2) times and unaffected spin-lattice relaxation ( T1) times. The nearly unchanging T1 relaxation rates and linearly dependent T2 relaxation rates have allowed for detection via zero echo time 19F MRI, and the in vivo MR potential has been preliminarily explored using 19F magnetic resonance spectroscopy (MRS). This fluorinated micelle has also demonstrated the ability to encapsulate the small-molecule chemotherapeutic doxorubicin and release its cargo in a thermoresponsive manner owing to its inherent stimuli-responsive properties, presenting an interesting avenue for the development of thermoresponsive 19F MRI/MRS-traceable theranostic agents.
Collapse
Affiliation(s)
- Lindsay K. Hill
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Center for Advanced Imaging Innovation and Research (CAIR), New York University School of Medicine, New York, New York 10016, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
- Department of Biomedical Engineering, SUNY Downstate Medical Center, Brooklyn, New York 11203, United States
| | - Joseph A. Frezzo
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Priya Katyal
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Dung Minh Hoang
- Center for Advanced Imaging Innovation and Research (CAIR), New York University School of Medicine, New York, New York 10016, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
| | - Zakia Ben Youss Gironda
- Center for Advanced Imaging Innovation and Research (CAIR), New York University School of Medicine, New York, New York 10016, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
| | - Cynthia Xu
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Xuan Xie
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Erika Delgado-Fukushima
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Youssef Z. Wadghiri
- Center for Advanced Imaging Innovation and Research (CAIR), New York University School of Medicine, New York, New York 10016, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
- Department of Chemistry, New York University, New York, New York 10012, United States
- Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, United States
| |
Collapse
|
19
|
Yousefpour P, McDaniel JR, Prasad V, Ahn L, Li X, Subrahmanyan R, Weitzhandler I, Suter S, Chilkoti A. Genetically Encoding Albumin Binding into Chemotherapeutic-loaded Polypeptide Nanoparticles Enhances Their Antitumor Efficacy. NANO LETTERS 2018; 18:7784-7793. [PMID: 30461287 PMCID: PMC10387222 DOI: 10.1021/acs.nanolett.8b03558] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report the development of drug-encapsulating nanoparticles that bind endogenous albumin upon intravenous injection and evaluate their in vivo performance in a murine as well as canine animal model. The gene encoding a protein-G derived albumin binding domain (ABD) was fused to that of a chimeric polypeptide (CP), and the ABD-CP fusion was recombinantly synthesized by bacterial expression of the gene. Doxorubicin (DOX) was conjugated to the C-terminus of the ABD-CP fusion, and conjugation of multiple copies of the drug to one end of the ABD-CP triggered its self-assembly into ∼100 nm diameter spherical micelles. ABD-decorated micelles exhibited submicromolar binding affinity for albumin and also preserved their spherical morphology in the presence of albumin. In a murine model, albumin-binding micelles exhibited dose-independent pharmacokinetics, whereas naked micelles exhibited dose-dependent pharmacokinetics. In addition, in a canine model, albumin binding micelles resulted in a 3-fold increase in plasma half-life and 6-fold increase in plasma exposure as defined by the area under the curve (AUC) of the drug, compared with naked micelles. Furthermore, in a murine colon carcinoma model, albumin-binding nanoparticles demonstrated lower uptake by the reticuloendothelial system (RES) system organs, the liver and spleen, that are the main target organs of toxicity for nanoparticulate delivery systems and higher uptake by the tumor than naked micelles. The increased uptake by s.c. C26 colon carcinoma tumors in mice translated to a wider therapeutic window of doses ranging from 20 to 60 mg equivalent of DOX per kg body weight (mg DOX equiv·kg-1 BW) for albumin-binding ABD-CP-DOX micelles, as compared to naked micelles that were only effective at their maximum tolerated dose of 40 mg DOX equiv·kg-1 BW.
Collapse
Affiliation(s)
- Parisa Yousefpour
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - Jonathan R. McDaniel
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - Varun Prasad
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - Lucie Ahn
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - Xinghai Li
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - Rishi Subrahmanyan
- Department of Chemistry, Duke University, Durham, NC 27708, United States
| | - Isaac Weitzhandler
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - Steven Suter
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC 27607, United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| |
Collapse
|
20
|
Chunhachaichana C, Srichana T. Efficiency of sildenafil encapsulation in poloxamer micelles. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2018.1518142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Charisopon Chunhachaichana
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Teerapol Srichana
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
21
|
Le Fer G, Wirotius AL, Brûlet A, Garanger E, Lecommandoux S. Self-Assembly of Stimuli-Responsive Biohybrid Synthetic-b-Recombinant Block Copolypeptides. Biomacromolecules 2018; 20:254-272. [DOI: 10.1021/acs.biomac.8b01390] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Gaëlle Le Fer
- Université de Bordeaux, Bordeaux INP, ENSCBP, 16 avenue Pey-Berland, 33607 Pessac Cedex, France
- CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), Pessac, France
| | - Anne-Laure Wirotius
- Université de Bordeaux, Bordeaux INP, ENSCBP, 16 avenue Pey-Berland, 33607 Pessac Cedex, France
- CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), Pessac, France
| | - Annie Brûlet
- Laboratoire Léon Brillouin, UMR 12 CEA−CNRS, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Elisabeth Garanger
- Université de Bordeaux, Bordeaux INP, ENSCBP, 16 avenue Pey-Berland, 33607 Pessac Cedex, France
- CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), Pessac, France
| | - Sébastien Lecommandoux
- Université de Bordeaux, Bordeaux INP, ENSCBP, 16 avenue Pey-Berland, 33607 Pessac Cedex, France
- CNRS, Laboratoire de Chimie des Polymères Organiques (UMR5629), Pessac, France
| |
Collapse
|
22
|
Luginbuhl KM, Mozhdehi D, Dzuricky M, Yousefpour P, Huang FC, Mayne NR, Buehne KL, Chilkoti A. Recombinant Synthesis of Hybrid Lipid-Peptide Polymer Fusions that Self-Assemble and Encapsulate Hydrophobic Drugs. Angew Chem Int Ed Engl 2017; 56:13979-13984. [PMID: 28879687 PMCID: PMC5909378 DOI: 10.1002/anie.201704625] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/14/2017] [Indexed: 11/06/2022]
Abstract
Inspired by biohybrid molecules that are synthesized in Nature through post-translational modification (PTM), we have exploited a eukaryotic PTM to recombinantly synthesize lipid-polypeptide hybrid materials. By co-expressing yeast N-myristoyltransferase with an elastin-like polypeptide (ELP) fused to a short recognition sequence in E. coli, we show robust and high-yield modification of the ELP with myristic acid. The ELP's reversible phase behavior is retained upon myristoylation and can be tuned to span a 30-60 °C. Myristoylated ELPs provide a versatile platform for genetically pre-programming self-assembly into micelles of varied size and shape. Their lipid cores can be loaded with hydrophobic small molecules by passive diffusion. Encapsulated doxorubicin and paclitaxel exhibit cytotoxic effects on 4T1 and PC3-luc cells, respectively, with potencies similar to chemically conjugated counterparts, and longer plasma circulation than free drug upon intravenous injection in mice.
Collapse
Affiliation(s)
- Kelli M Luginbuhl
- Department of Biomedical Engineering, Duke University, 1427 FCIEMAS, Box 90281, USA
- NSF Research Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Davoud Mozhdehi
- Department of Biomedical Engineering, Duke University, 1427 FCIEMAS, Box 90281, USA
- NSF Research Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Michael Dzuricky
- Department of Biomedical Engineering, Duke University, 1427 FCIEMAS, Box 90281, USA
- NSF Research Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Parisa Yousefpour
- Department of Biomedical Engineering, Duke University, 1427 FCIEMAS, Box 90281, USA
| | - Fred C Huang
- Department of Biomedical Engineering, Duke University, 1427 FCIEMAS, Box 90281, USA
| | - Nicholas R Mayne
- Department of Biomedical Engineering, Duke University, 1427 FCIEMAS, Box 90281, USA
| | - Kristen L Buehne
- Department of Biomedical Engineering, Duke University, 1427 FCIEMAS, Box 90281, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, 1427 FCIEMAS, Box 90281, USA
- NSF Research Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
23
|
Luginbuhl KM, Mozhdehi D, Dzuricky M, Yousefpour P, Huang FC, Mayne NR, Buehne KL, Chilkoti A. Recombinant Synthesis of Hybrid Lipid–Peptide Polymer Fusions that Self‐Assemble and Encapsulate Hydrophobic Drugs. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kelli M. Luginbuhl
- Department of Biomedical Engineering Duke University 1427 FCIEMAS, Box 90281 USA
- NSF Research Triangle Materials Research Science and Engineering Center Department of Biomedical Engineering Duke University Durham NC 27708 USA
| | - Davoud Mozhdehi
- Department of Biomedical Engineering Duke University 1427 FCIEMAS, Box 90281 USA
- NSF Research Triangle Materials Research Science and Engineering Center Department of Biomedical Engineering Duke University Durham NC 27708 USA
| | - Michael Dzuricky
- Department of Biomedical Engineering Duke University 1427 FCIEMAS, Box 90281 USA
- NSF Research Triangle Materials Research Science and Engineering Center Department of Biomedical Engineering Duke University Durham NC 27708 USA
| | - Parisa Yousefpour
- Department of Biomedical Engineering Duke University 1427 FCIEMAS, Box 90281 USA
| | - Fred C. Huang
- Department of Biomedical Engineering Duke University 1427 FCIEMAS, Box 90281 USA
| | - Nicholas R. Mayne
- Department of Biomedical Engineering Duke University 1427 FCIEMAS, Box 90281 USA
| | - Kristen L. Buehne
- Department of Biomedical Engineering Duke University 1427 FCIEMAS, Box 90281 USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering Duke University 1427 FCIEMAS, Box 90281 USA
- NSF Research Triangle Materials Research Science and Engineering Center Department of Biomedical Engineering Duke University Durham NC 27708 USA
| |
Collapse
|
24
|
Bhattacharyya J, Ren XR, Mook RA, Wang J, Spasojevic I, Premont RT, Li X, Chilkoti A, Chen W. Niclosamide-conjugated polypeptide nanoparticles inhibit Wnt signaling and colon cancer growth. NANOSCALE 2017; 9:12709-12717. [PMID: 28828438 PMCID: PMC5863494 DOI: 10.1039/c7nr01973d] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Abnormal Wnt activity is a major mechanism responsible for many diseases, including cancer. Previously, we reported that the anthelmintic drug Niclosamide (NIC) inhibits Wnt/β-catenin signaling and suppresses colon cancer cell growth. Although the pharmacokinetic properties of NIC are appropriate for use as an anthelmintic agent, its low solubility, low bioavailability and low systemic exposure limit its usefulness in treating systemic diseases. To overcome these limitations, we conjugated NIC to recombinant chimeric polypeptides (CPs), and the CP-NIC conjugate spontaneously self-assembled into sub-100 nm near-monodisperse nanoparticles. CP-NIC nanoparticles delivered intravenously act as a pro-drug of NIC to dramatically increase exposure of NIC compared to dosing with free NIC. CP-NIC improved anti-tumor activity compared to NIC in a xenograft model of human colon cancer. Because NIC has multiple biological activities, CP-NIC could be used for treatment of multiple diseases, including cancer, bacterial and viral infection, type II diabetes, NASH and NAFLD.
Collapse
Affiliation(s)
- Jayanta Bhattacharyya
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - Xiu-Rong Ren
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Robert A. Mook
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Jiangbo Wang
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Ivan Spasojevic
- Duke Cancer Institute, PK/PD Core Laboratory, Durham, NC 27710, United States
| | - Richard T. Premont
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Xinghai Li
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - Wei Chen
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| |
Collapse
|
25
|
Weitzhandler I, Dzuricky M, Hoffmann I, Garcia Quiroz F, Gradzielski M, Chilkoti A. Micellar Self-Assembly of Recombinant Resilin-/Elastin-Like Block Copolypeptides. Biomacromolecules 2017; 18:2419-2426. [PMID: 28570078 DOI: 10.1021/acs.biomac.7b00589] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reported here is the synthesis of perfectly sequence defined, monodisperse diblock copolypeptides of hydrophilic elastin-like and hydrophobic resilin-like polypeptide blocks and characterization of their self-assembly as a function of structural parameters by light scattering, cryo-TEM, and small-angle neutron scattering. A subset of these diblock copolypeptides exhibit lower critical solution temperature and upper critical solution temperature phase behavior and self-assemble into spherical or cylindrical micelles. Their morphologies are dictated by their chain length, degree of hydrophilicity, and hydrophilic weight fraction of the ELP block. We find that (1) independent of the length of the corona-forming ELP block there is a minimum threshold in the length of the RLP block below which self-assembly does not occur, but that once that threshold is crossed, (2) the RLP block length is a unique molecular parameter to independently tune self-assembly and (3) increasing the hydrophobicity of the corona-forming ELP drives a transition from spherical to cylindrical morphology. Unlike the self-assembly of purely ELP-based block copolymers, the self-assembly of RLP-ELPs can be understood by simple principles of polymer physics relating hydrophilic weight fraction and polymer-polymer and polymer-solvent interactions to micellar morphology, which is important as it provides a route for the de novo design of desired nanoscale morphologies from first principles.
Collapse
Affiliation(s)
- Isaac Weitzhandler
- Department of Biomedical Engineering and Research Triangle Materials Research Science and Engineering Center (RT-MRSEC), Duke University , Durham, North Carolina 27708, United States
| | - Michael Dzuricky
- Department of Biomedical Engineering and Research Triangle Materials Research Science and Engineering Center (RT-MRSEC), Duke University , Durham, North Carolina 27708, United States
| | - Ingo Hoffmann
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie Technische Universität Berlin , 10623 Berlin, Germany
| | - Felipe Garcia Quiroz
- Department of Biomedical Engineering and Research Triangle Materials Research Science and Engineering Center (RT-MRSEC), Duke University , Durham, North Carolina 27708, United States
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie Technische Universität Berlin , 10623 Berlin, Germany
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering and Research Triangle Materials Research Science and Engineering Center (RT-MRSEC), Duke University , Durham, North Carolina 27708, United States
| |
Collapse
|
26
|
Thermo-induced multistep assembly of double-hydrophilic block copolypeptoids in water. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4044-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Widder K, MacEwan SR, Garanger E, Núñez V, Lecommandoux S, Chilkoti A, Hinderberger D. Characterisation of hydration and nanophase separation during the temperature response in hydrophobic/hydrophilic elastin-like polypeptide (ELP) diblock copolymers. SOFT MATTER 2017; 13:1816-1822. [PMID: 28169384 DOI: 10.1039/c6sm02427k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To understand the complex nanoscale dehydration process during the lower critical solution temperature (LCST) based inverse phase transition of a class of thermoresponsive biopolymers, diblock elastin-like polypeptides (ELPs) were investigated by spin probing continuous wave electron paramagnetic resonance (CW EPR) spectroscopy. The diblock copolymers composed of a hydrophobic block and a hydrophilic block showed different mechanisms of a temperature-driven phase transition. While the phase transition temperature is a function of the hydrophobic mass fraction of the diblock ELPs, the hydrophilic block length determines the molecular structure of the polymer aggregates formed above the transition temperature. When the weight ratio of hydrophilic block length to hydrophobic block length is greater than or equal to 0.3, the polymer aggregates consist of a hydrophobic core and a hydrophilic corona. The interface of these two regions become permeable at temperatures above the transition temperature. In case of smaller ratios, the aggregating hydrophobic parts of the polymer enclose the hydrated hydrophilic blocks, that are too small to form a hydrophilic corona, leading to bigger and less dense aggregates of higher polarity.
Collapse
Affiliation(s)
- Katharina Widder
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| | - Sarah R MacEwan
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Campus Box 90281, Durham, North Carolina 27708, USA
| | - Elisabeth Garanger
- Laboratoire de Chimie des Polymères Organiques, CNRS UMR 5629, Université de Bordeaux, Bordeaux-INP, Pessac 33607 Cedex, France
| | - Vanesa Núñez
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| | - Sébastien Lecommandoux
- Laboratoire de Chimie des Polymères Organiques, CNRS UMR 5629, Université de Bordeaux, Bordeaux-INP, Pessac 33607 Cedex, France
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Campus Box 90281, Durham, North Carolina 27708, USA
| | - Dariush Hinderberger
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
28
|
MacEwan SR, Weitzhandler I, Hoffmann I, Genzer J, Gradzielski M, Chilkoti A. Phase Behavior and Self-Assembly of Perfectly Sequence-Defined and Monodisperse Multiblock Copolypeptides. Biomacromolecules 2017; 18:599-609. [PMID: 28094978 PMCID: PMC5558835 DOI: 10.1021/acs.biomac.6b01759] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper investigates how the properties of multiblock copolypeptides can be tuned by their block architecture, defined by the size and distribution of blocks along the polymer chain. These parameters were explored by the precise, genetically encoded synthesis of recombinant elastin-like polypeptides (ELPs). A family of ELPs was synthesized in which the composition and length were conserved while the block length and distribution were varied, thus creating 11 ELPs with unique block architectures. To our knowledge, these polymers are unprecedented in their intricately and precisely varied architectures. ELPs exhibit lower critical solution temperature (LCST) behavior and micellar self-assembly, both of which impart easily measured physicochemical properties to the copolymers, providing insight into polymer hydrophobicity and self-assembly into higher order structures, as a function of solution temperature. Even subtle variation in block architecture changed the LCST phase behavior and morphology of these ELPs, measured by their temperature-triggered phase transition and nanoscale self-assembly. Size and morphology of polypeptide micelles could be tuned solely by controlling the block architecture, thus demonstrating that when sequence can be precisely controlled, nanoscale self-assembly of polypeptides can be modulated by block architecture.
Collapse
Affiliation(s)
- Sarah R MacEwan
- Department of Biomedical Engineering, Duke University , Durham, North Carolina 27708, United States
- Research Triangle Materials Research Science and Engineering Center , Durham, North Carolina 27708, United States
| | - Isaac Weitzhandler
- Department of Biomedical Engineering, Duke University , Durham, North Carolina 27708, United States
- Research Triangle Materials Research Science and Engineering Center , Durham, North Carolina 27708, United States
| | - Ingo Hoffmann
- Stranski-Laboratorium fur Physikalische und Theoretische Chemie, Institut fur Chemie, Technische Universität Berlin , 10623, Berlin, Germany
| | - Jan Genzer
- Research Triangle Materials Research Science and Engineering Center , Durham, North Carolina 27708, United States
- Department of Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Michael Gradzielski
- Stranski-Laboratorium fur Physikalische und Theoretische Chemie, Institut fur Chemie, Technische Universität Berlin , 10623, Berlin, Germany
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University , Durham, North Carolina 27708, United States
- Research Triangle Materials Research Science and Engineering Center , Durham, North Carolina 27708, United States
| |
Collapse
|
29
|
Wang J, Liu K, Xing R, Yan X. Peptide self-assembly: thermodynamics and kinetics. Chem Soc Rev 2016; 45:5589-5604. [PMID: 27487936 DOI: 10.1039/c6cs00176a] [Citation(s) in RCA: 632] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Self-assembling systems play a significant role in physiological functions and have therefore attracted tremendous attention due to their great potential for applications in energy, biomedicine and nanotechnology. Peptides, consisting of amino acids, are among the most popular building blocks and programmable molecular motifs. Nanostructures and materials assembled using peptides exhibit important potential for green-life new technology and biomedical applications mostly because of their bio-friendliness and reversibility. The formation of these ordered nanostructures pertains to the synergistic effect of various intermolecular non-covalent interactions, including hydrogen-bonding, π-π stacking, electrostatic, hydrophobic, and van der Waals interactions. Therefore, the self-assembly process is mainly driven by thermodynamics; however, kinetics is also a critical factor in structural modulation and function integration. In this review, we focus on the influence of thermodynamic and kinetic factors on structural assembly and regulation based on different types of peptide building blocks, including aromatic dipeptides, amphiphilic peptides, polypeptides, and amyloid-relevant peptides.
Collapse
Affiliation(s)
- Juan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | |
Collapse
|
30
|
van Eldijk MB, Schoonen L, Cornelissen JJLM, Nolte RJM, van Hest JCM. Metal Ion-Induced Self-Assembly of a Multi-Responsive Block Copolypeptide into Well-Defined Nanocapsules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2476-2483. [PMID: 27151830 DOI: 10.1002/smll.201503889] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/03/2016] [Indexed: 06/05/2023]
Abstract
Protein cages are an interesting class of biomaterials with potential applications in bionanotechnology. Therefore, substantial effort is spent on the development of capsule-forming designer polypeptides with a tailor-made assembly profile. The expanded assembly profile of a triblock copolypeptide consisting of a metal ion chelating hexahistidine-tag, a stimulus-responsive elastin-like polypeptide block, and a pH-responsive morphology-controlling viral capsid protein is presented. The self-assembly of this multi-responsive protein-based block copolymer is triggered by the addition of divalent metal ions. This assembly process yields monodisperse nanocapsules with a 20 nm diameter composed of 60 polypeptides. The well-defined nanoparticles are the result of the emergent properties of all the blocks of the polypeptide. These results demonstrate the feasibility of hexahistidine-tags to function as supramolecular cross-linkers. Furthermore, their potential for the metal ion-mediated encapsulation of hexahistidine-tagged proteins is shown.
Collapse
Affiliation(s)
- Mark B van Eldijk
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Lise Schoonen
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Jeroen J L M Cornelissen
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands
| | - Roeland J M Nolte
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Jan C M van Hest
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| |
Collapse
|
31
|
Men Y, Peng F, Tu Y, van Hest JCM, Wilson DA. Methods for production of uniform small-sized polymersome with rigid membrane. Polym Chem 2016. [DOI: 10.1039/c6py00668j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report a facile methodology for the formation of uniform small-sized poly(ethylene glycol)-block-polystyrene (PEG-b-PS) polymersomes, via extrusion and sonication methods by using organic solvent as plasticizing agent.
Collapse
Affiliation(s)
- Yongjun Men
- Radboud University Nijmegen
- Institute for Molecules and Materials
- Nijmegen
- The Netherlands
| | - Fei Peng
- Radboud University Nijmegen
- Institute for Molecules and Materials
- Nijmegen
- The Netherlands
| | - Yingfeng Tu
- Radboud University Nijmegen
- Institute for Molecules and Materials
- Nijmegen
- The Netherlands
| | - Jan C. M. van Hest
- Radboud University Nijmegen
- Institute for Molecules and Materials
- Nijmegen
- The Netherlands
| | - Daniela A. Wilson
- Radboud University Nijmegen
- Institute for Molecules and Materials
- Nijmegen
- The Netherlands
| |
Collapse
|