Bollas S, Chrissopoulou K, Andrikopoulos KS, Voyiatzis GA, Anastasiadis SH. Polymer Conformation under Confinement.
Polymers (Basel) 2017;
9:E73. [PMID:
30970750 PMCID:
PMC6432019 DOI:
10.3390/polym9020073]
[Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 01/28/2017] [Accepted: 02/13/2017] [Indexed: 11/27/2022] Open
Abstract
The conformation of polymer chains under confinement is investigated in intercalated polymer/layered silicate nanocomposites. Hydrophilic poly(ethylene oxide)/sodium montmorillonite, PEO/Na⁺-MMT, hybrids were prepared utilizing melt intercalation with compositions where the polymer chains are mostly within the ~1 nm galleries of the inorganic material. The polymer chains are completely amorphous in all compositions even at temperatures where the bulk polymer is highly crystalline. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) is utilized to investigate the conformation of the polymer chains over a broad range of temperatures from below to much higher than the bulk polymer melting temperature. A systematic increase of the gauche conformation relatively to the trans is found with decreasing polymer content both for the C⁻C and the C⁻O bonds that exist along the PEO backbone indicating that the severe confinement and the proximity to the inorganic surfaces results in a more disordered state of the polymer.
Collapse