1
|
Zhu M, Pan X, Zheng T, Li L. Research progress on the conformational properties of comb-like polymers in dilute solutions. SOFT MATTER 2024; 20:463-483. [PMID: 38167904 DOI: 10.1039/d3sm01102j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
As a special type of branched polymers, comb-like polymers simultaneously possess the structural characteristics of a linear backbone profile and crowded sidechain branches/grafts, and such structural uniqueness leads to reduced interchain entanglement, enhanced molecular orientation, and unique stimulus-response behavior, which greatly expands the potential applications in the fields of super-soft elastomers, molecular sensors, lubricants, photonic crystals, etc. In principle, all these molecular features can be traced back to three structural parameters, i.e., the degree of polymerization of the backbone (Nb), the degree of polymerization of the graft sidechain (Ng), and the grafting density (σ). Consequently, it is of great importance to understand the correlation mechanism between the structural characteristics and physicochemical properties, among which, the conformational properties in dilute solution have received the most attention due to its central position in polymer science. In the past decades, the development of synthetic chemistry and characterization techniques has greatly stimulated the progress of this field, and a number of experiments have been executed to verify the conformational properties; however, due to the complexity of the structural parameters and the diversity of the chemical design, the achieved experimental progress displays significant controversies compared with the theoretical predictions. This review aims to provide a full picture of recent research progress on this topic, specifically, (1) first, a few classical theoretical models regarding the chain conformation are introduced, and the quasi-two-parameter (QTP) theory for the conformation analysis is highlighted; (2) second, the research progress of the static conformation of comb-like polymers in dilute solution is discussed; (3) third, the research progress of the dynamic conformation in dilute solution is further discussed. The key issues, existing controversies and future research directions are also highlighted. We hope that this review can provide insightful information for the understanding of the conformational properties of comb-like polymers, open a new door for the regulation of conformational behavior in related applications, and promote related theoretical and experimental research in the community.
Collapse
Affiliation(s)
- Mo Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xuejun Pan
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China.
| | - Tao Zheng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lianwei Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Pan T, Dutta S, Sing CE. Interaction potential for coarse-grained models of bottlebrush polymers. J Chem Phys 2022; 156:014903. [PMID: 34998351 DOI: 10.1063/5.0076507] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bottlebrush polymers are a class of highly branched macromolecules that show promise for applications such as self-assembled photonic materials and tunable elastomers. However, computational studies of bottlebrush polymer solutions and melts remain challenging due to the high computational cost involved in explicitly accounting for the presence of side chains. Here, we consider a coarse-grained molecular model of bottlebrush polymers where the side chains are modeled implicitly, with the aim of expediting simulations by accessing longer length and time scales. The key ingredients of this model are the size of a coarse-grained segment and a suitably coarse-grained interaction potential between the non-bonded segments. Prior studies have not focused on developing explicit forms of such potentials, instead, relying on scaling arguments to model non-bonded interactions. Here, we show how to systematically calculate an interaction potential between the coarse-grained segments of bottlebrush from finer grained explicit side chain models using Monte Carlo and Brownian dynamics and then incorporate it into an implicit side chain model. We compare the predictions from our coarse-grained implicit side chain model with those obtained from models with explicit side chains in terms of the potential of mean force, the osmotic second virial coefficient, and the interpenetration function, highlighting the range of applicability and limitations of the coarse-grained representation. Although presented in the context of homopolymer bottlebrushes in athermal solvents, our proposed method can be extended to other solvent conditions as well as to different monomer chemistries. We expect that our implicit side chain model will prove useful for accelerating large-scale simulations of bottlebrush solutions and assembly.
Collapse
Affiliation(s)
- Tianyuan Pan
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, Illinois 61801, USA
| | - Sarit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
| | - Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
| |
Collapse
|
3
|
Pan T, Patel BB, Walsh DJ, Dutta S, Guironnet D, Diao Y, Sing CE. Implicit Side-Chain Model and Experimental Characterization of Bottlebrush Block Copolymer Solution Assembly. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tianyuan Pan
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Bijal B. Patel
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Dylan J. Walsh
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sarit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ying Diao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Charles E. Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Boyle BM, Collins JL, Mensch TE, Ryan MD, Newell BS, Miyake GM. Impact of Backbone Composition on Homopolymer Dynamics and Brush Block Copolymer Self-Assembly. Polym Chem 2020; 11:7147-7158. [PMID: 33456502 PMCID: PMC7805478 DOI: 10.1039/d0py01007c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four series of brush block copolymers (BBCP), with near identical side chain compositions but varying backbone structures, were synthesized to investigate the effect of backbone structure on the process of thermal BBCP self-assembly to photonic crystals (PCs). Each of the self-assembled PC films were examined by reflection measurements, small angle X-ray scattering measurements, and scanning electron microscopy to compare the resulting properties of the polymeric photonic crystal and the nanostructured morphology impacted by the backbone structure. It was found that the composition of the brush backbone within a BBCP has a dramatic effect on the ability of the BBCP to self-assemble into ordered nanostructures and on the local ordering of the nanostructure morphology accessed with higher molecular weight (MW) BBCPs (> 1,500 kg/mol). BBCPs with a norbornene imide-based backbone were able to thermally self-assemble to longer wavelength reflecting PCs and had higher fidelity ordering of lamellar nanostructures with higher MW polymers. By analyzing the melt rheological responses of the backbone compositions, both as linear polymers and homobrush polymers, it was concluded that the inherent fragility of the backbone promotes enhanced local ordering in the lamellar nanostructure morphology as well as access to larger domain sizes.
Collapse
Affiliation(s)
- Bret M. Boyle
- Department of Chemistry, Colorado State University, Fort Collins, Colorado
| | - Joseph L. Collins
- Department of Chemistry, Colorado State University, Fort Collins, Colorado
| | - Tara E. Mensch
- Department of Chemistry, Colorado State University, Fort Collins, Colorado
| | - Matthew D. Ryan
- Department of Chemistry, Colorado State University, Fort Collins, Colorado
| | - Brian S. Newell
- Department of Chemistry, Colorado State University, Fort Collins, Colorado
| | - Garret M. Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
5
|
Affiliation(s)
- Sarit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Charles E. Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Wu M, Gong M, Zhou D, Wang R, Chen D. Effect of grafting density on the self-assembly of side-chain discotic liquid crystalline polymers with triphenylene discogens. SOFT MATTER 2020; 16:375-382. [PMID: 31803877 DOI: 10.1039/c9sm02097g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The self-assembly of triphenylene (TP)-based side-chain discotic liquid crystalline polymers (SDLCPs) with different grafting densities was investigated by using the dissipative particle dynamics (DPD) method. We explored the coupling effect between the main chain and the side-chain TP discogens with various length alkyl tails, and how the rigidity of the main chain, grafting density and spacer lengths affect the self-assembled morphologies of SDLCPs. By changing the above factors, we have obtained nine phases. It is deduced that a moderate grafting density, a polymer backbone with sufficient length and alkyl tails with medium length ensure SDLCPs form ordered columnar mesophases. It is worth noting that double columnar phases (Colne-Col and Colh-Col) were obtained with high grafting densities and sufficiently long backbones. All these results provide an effective basis and helpful guidance for the in-depth research of such kinds of fascinating organic semiconducting materials, SDLCPs, from the perspective of grafting density.
Collapse
Affiliation(s)
- Mei Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, China.
| | | | | | | | | |
Collapse
|
7
|
Sunday DF, Martin TB, Chang AB, Burns AB, Grubbs RH. Addressing the challenges of modeling the scattering from bottlebrush polymers in solution. JOURNAL OF POLYMER SCIENCE 2020; 58:10.1002/pol.20190289. [PMID: 33305292 PMCID: PMC7724922 DOI: 10.1002/pol.20190289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/02/2020] [Indexed: 12/17/2022]
Abstract
Small-angle scattering measurements of complex macromolecules in solution are used to establish relationships between chemical structure and conformational properties. Interpretation of the scattering data requires an inverse approach where a model is chosen and the simulated scattering intensity from that model is iterated to match the experimental scattering intensity. This raises challenges in the case where the model is an imperfect approximation of the underlying structure, or where there are significant correlations between model parameters. We examine three bottlebrush polymers (consisting of polynorbornene backbone and polystyrene side chains) in a good solvent using a model commonly applied to this class of polymers: the flexible cylinder model. Applying a series of constrained Monte-Carlo Markov Chain analyses demonstrates the severity of the correlations between key parameters and the presence of multiple close minima in the goodness of fit space. We demonstrate that a shape-agnostic model can fit the scattering with significantly reduced parameter correlations and less potential for complex, multimodal parameter spaces. We provide recommendations to improve the analysis of complex macromolecules in solution, highlighting the value of Bayesian methods. This approach provides richer information for understanding parameter sensitivity compared to methods which produce a single, best fit.
Collapse
Affiliation(s)
- Daniel F. Sunday
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Tyler B. Martin
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Alice B. Chang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Adam B. Burns
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Robert H. Grubbs
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| |
Collapse
|
8
|
Dutta S, Pan T, Sing CE. Bridging Simulation Length Scales of Bottlebrush Polymers Using a Wormlike Cylinder Model. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00363] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Dutta S, Wade MA, Walsh DJ, Guironnet D, Rogers SA, Sing CE. Dilute solution structure of bottlebrush polymers. SOFT MATTER 2019; 15:2928-2941. [PMID: 30724969 DOI: 10.1039/c9sm00033j] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Bottlebrush polymers are a class of macromolecules that have recently found use in a wide variety of materials, ranging from lubricating brushes and nanostructured coatings to elastomeric gels that exhibit structural colors. These polymers are characterized by dense branches extending from a central backbone and thus have properties distinct from linear polymers. It remains a challenge to specifically understand conformational properties of these molecules, due to the wide range of architectural parameters that can be present in a system, and thus there is a need to accurately characterize and model these molecules. In this paper, we use a combination of viscometry, light scattering, and computer simulations to gain insight into the conformational properties of dilute solution bottlebrush polymers. We focus on a series of model bottlebrushes consisting of a poly(norbornene) (PNB) backbone with poly(lactic acid) (PLA) side chains. We demonstrate that intrinsic viscosity and hydrodynamic radius are experimental observations sensitive to molecular architecture, exhibiting distinct differences with different choices of branches and backbone lengths. Informed by the atomistic structure of this PNB-PLA system, we rationalize a coarse-grained simulation model that we evaluate using a combination of Brownian dynamics and Monte Carlo simulations. We show that this exhibits quantitative matching to experimental results, enabling us to characterize the overall shape of the bottlebrush via a number of metrics that can be extended to more general bottlebrush architectures.
Collapse
Affiliation(s)
- Sarit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Isono T, Lee H, Miyachi K, Satoh Y, Kakuchi T, Ree M, Satoh T. Synthesis, Thermal Properties, and Morphologies of Amphiphilic Brush Block Copolymers with Tacticity-Controlled Polyether Main Chain. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Hoyeol Lee
- Department of Chemistry, Division of Advanced Materials Science, and Polymer Research Institute, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | | | | | - Toyoji Kakuchi
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology (CUST), Weixing Road 7989, Changchun, Jilin 130022, China
| | - Moonhor Ree
- Department of Chemistry, Division of Advanced Materials Science, and Polymer Research Institute, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | | |
Collapse
|
11
|
Affiliation(s)
| | - Yuta SAITO
- Graduate School of Science and Engineering, Yamagata University
| | - Atsushi NARUMI
- Graduate School of Organic Materials Science, Yamagata University
| | - Seigou KAWAGUCHI
- Graduate School of Organic Materials Science, Yamagata University
| |
Collapse
|
12
|
Kikuchi M, Takahara A, Kawaguchi S. Dimensional Characterizations from Rod Stars to Brushes of Polymers with a Low Degree of Polymerization. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Moriya Kikuchi
- Institute
for Materials Chemistry and Engineering, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395 Japan
| | - Atsushi Takahara
- Institute
for Materials Chemistry and Engineering, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395 Japan
| | - Seigou Kawaguchi
- Department
of Organic Materials Science, Graduate School of Organic Materials
Science, Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Japan
| |
Collapse
|
13
|
Zhang J, Schneiderman DK, Li T, Hillmyer MA, Bates FS. Design of Graft Block Polymer Thermoplastics. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02033] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jiuyang Zhang
- School
of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | | | | | | | | |
Collapse
|
14
|
Influence of the chemical structure of cross-linking agents on properties of thermally reversible networks. PURE APPL CHEM 2016. [DOI: 10.1515/pac-2016-0804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
It is well-known that the properties of cross-linked rubbers are strongly affected by the cross-link density. In this work it is shown that for thermoreversibly cross-linked elastomers, the type and length of the cross-linker also have a significant effect. A homologous series of diamine and bismaleimide cross-linkers was used to cross-link maleic-anhydride-grafted EPM irreversibly and furan-modified EPM thermoreversibly, respectively. Bismaleimide cross-linkers with a polarity close to that of EPM and a relatively low melting point have a better solubility in the rubber matrix, which results in higher chemical conversion and, thus, higher cross-link densities at the same molar amount of cross-linker. Samples cross-linked with different spacers (aromatic and aliphatic spacers of different lengths) were compared at the same cross-link density to interpret the effects on the material properties. The rigid character of the short aliphatic and the aromatic cross-linkers accounts for the observed increase in hardness, Young´s modulus and tensile strength with respect to the longer, more flexible aliphatic cross-linkers. In conclusion, the structure of the cross-linking agent can be considered as an alternative variable in tuning the rubber properties, especially for thermoreversibly cross-linked rubber.
Collapse
|
15
|
Nakamura Y. Stiffness parameter of brush-like polymers with rod-like side chains. J Chem Phys 2016; 145:014903. [DOI: 10.1063/1.4954920] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|