1
|
Wu T, Wang Z, Yin F, Wang W, Yi Z. Isoporous Membranes by the Symmetric Triblock Copolymer: A Strategy to Improve the Mechanical Strength without Sharply Changing the Pore Size and Permselectivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37073-37086. [PMID: 38958638 DOI: 10.1021/acsami.4c07113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Isoporous membranes produced from diblock copolymers commonly display a poor mechanical property that shows many negative impacts on their separation application. It is theoretically predicted that dense films produced from symmetric triblock copolymers show much stronger mechanical properties than those of homologous diblock copolymers. However, to the best of our knowledge, symmetric triblock copolymers have rarely been fabricated into isoporous membranes before, and a full understanding of separation as well as mechanical properties of membranes prepared from triblock copolymers and homologous diblock copolymers has not been conducted, either. In this work, a cleavable symmetric triblock copolymer with polystyrene as the side block and poly(4-vinylpyridine) (P4VP) as the middle block was synthesized and designed by the RAFT polymerization using the symmetric chain transfer agent, which located at the center of polymer chains and could be removed to produce homologous diblock copolymers with half-length while having the same composition as that found in triblock copolymers. The self-assembly of these two copolymers in thin films and casting solutions was first investigated, observing that they displayed similar self-organized structures under these two conditions. When fabricated into isoporous membranes, they showed similar pore sizes (5-7% difference) and comparable rejection performance (∼10% difference). However, isoporous membranes produced from triblock copolymers showed significantly improved mechanical strength and higher toughness (2-10 times larger) as evidenced by the compacting resistance, strain-stress determination, and nanoindentation testing, suggesting the unique and novel structure-performance relationship in the isoporous membranes produced from symmetric triblock copolymers. The above finding will guide the way to fabricate mechanically robust isoporous membranes without notably changing the separation performance from rarely used symmetric triblock copolymers, which can be synthesized by the controlled polymerization as facilely as that found for diblock copolymers.
Collapse
Affiliation(s)
- Tao Wu
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Huzhou Institute of Collaborative Innovation Center for Membrane Separation and Water treatment, Hong Feng Road, Huzhou 313000, China
| | - Zixiong Wang
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fengjie Yin
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenjing Wang
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhuan Yi
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Huzhou Institute of Collaborative Innovation Center for Membrane Separation and Water treatment, Hong Feng Road, Huzhou 313000, China
| |
Collapse
|
2
|
Aflaha R, Putri LA, Maharani CN, Rianjanu A, Roto R, Wasisto HS, Triyana K. Tuning a Superhydrophobic Surface on an Electrospun Polyacrylonitrile Nanofiber Membrane by Polysulfone Blending. ACS OMEGA 2024; 9:29840-29847. [PMID: 39005793 PMCID: PMC11238207 DOI: 10.1021/acsomega.4c03554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024]
Abstract
Nanofibers made of different materials have been continuously studied and widely used as membranes due to their simple fabrication techniques and tunable surface characteristics. In this work, we developed polyacrylonitrile (PAN) nanofiber membranes by the electrospinning method and blended them with polysulfone (PSU) to obtain superhydrophobic surfaces on the fiber structures. The scanning electron microscopy (SEM) images show that the fabricated nanofibers have smooth and continuous morphology. In addition, to observe the effect of the PSU-based blending material, Fourier-transform infrared (FTIR) spectra of the samples were acquired, providing chemical compositions of the bare and PSU-blended PAN nanofibers. The fabricated PSU/PAN composite nanofibers have a diameter range of 222-392 nm. In terms of the wettability, the measured water contact angle (WCA) value of the PAN nanofibers was improved from (14 ± 1)° to (156 ± 6)°, (160 ± 4)°, (156 ± 6)°, and (158 ± 4)° after being blended with PSU solutions having concentrations of 0.5, 1, 1.5, and 2 wt %, respectively. This result has proven that the PAN nanofiber surfaces can be tuned from hydrophilic to superhydrophobic characteristics simply by introducing PSU into the PAN solution prior to electrospinning, where a small PSU concentration of 0.5% has been sufficient to provide the desired effect. Owing to its low-cost and highly efficient process, this strategy may be further explored for other types of polymer-based nanofibers.
Collapse
Affiliation(s)
- Rizky Aflaha
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, BLS 21, Yogyakarta 55281, Indonesia
| | - Linda Ardita Putri
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, BLS 21, Yogyakarta 55281, Indonesia
| | - Chlara Naren Maharani
- Department
of Physics Education, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta, Yogyakarta 55281, Indonesia
| | - Aditya Rianjanu
- Department
of Materials Engineering, Institut Teknologi
Sumatera, Terusan Ryacudu, Way Hui, Jati Agung, Lampung 35365, Indonesia
- Center
for Green and Sustainable Materials, Institut
Teknologi Sumatera, Terusan Ryacudu, Way Hui, Jati Agung, Lampung 35365, Indonesia
| | - Roto Roto
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, BLS 21, Yogyakarta 55281, Indonesia
| | | | - Kuwat Triyana
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, BLS 21, Yogyakarta 55281, Indonesia
| |
Collapse
|
3
|
Han WH, Wang QY, Kang YY, Shi LR, Long Y, Zhou X, Hao CC. Cross-linking electrospinning. NANOSCALE 2023; 15:15513-15551. [PMID: 37740390 DOI: 10.1039/d3nr03956k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Although electrospinning (e-spinning) has witnessed rapid development in recent years, it has also been criticized by environmentalists due to the use of organic solvents. Therefore, aqueous e-spinning (green e-spinning) is considered a more attractive technique. However, considering the poor water resistance and mechanical properties of electrospun (e-spun) nanofibers, cross-linking is a perfect solution. In this review, we systematically discuss the cross-linking e-spinning system for the first time, including cross-linking strategies (in situ, liquid immersion, vapor, and spray cross-linking), cross-linking mechanism (physical and chemical cross-linking) of e-spun nanofibers, and the various applications (e.g., tissue engineering, drug delivery, water treatment, food packaging, and sensors) of cross-linked e-spun nanofibers. Among them, we highlight several cross-linking methods, including UV light cross-linking, electron beam cross-linking, glutaraldehyde (and other commonly used cross-linking agents) chemical cross-linking, thermal cross-linking, and enzymatic cross-linking. Finally, we confirm the significance of cross-linking e-spinning and reveal the problems in the construction of this system.
Collapse
Affiliation(s)
- Wei-Hua Han
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Weifang 262700, China
| | - Qing-Yu Wang
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yuan-Yi Kang
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Li-Rui Shi
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yu Long
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xin Zhou
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Chun-Cheng Hao
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
4
|
Altinkok C, Sagdic G, Daglar O, Ercan Ayra M, Yuksel Durmaz Y, Durmaz H, Acik G. A new strategy for direct solution electrospinning of phosphorylated poly(vinyl chloride)/polyethyleneimine blend in alcohol media. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Medina-Castillo AL, Ruzic L, Nidetzky B, Bolivar JM. Hydrophilic Nonwoven Nanofiber Membranes as Nanostructured Supports for Enzyme Immobilization. ACS APPLIED POLYMER MATERIALS 2022; 4:6054-6066. [PMID: 35991305 PMCID: PMC9379912 DOI: 10.1021/acsapm.2c00863] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The high porosity, interconnected pore structure, and high surface area-to-volume ratio make the hydrophilic nonwoven nanofiber membranes (NV-NF-Ms) promising nanostructured supports for enzyme immobilization in different biotechnological applications. In this work, NV-NF-Ms with excellent mechanical and chemical properties were designed and fabricated by electrospinning in one step without using additives or complicated crosslinking processes after electrospinning. To do so, two types of ultrahigh-molecular-weight linear copolymers with very different mechanical properties were used. Methyl methacrylate-co-hydroxyethyl methacrylate (p(MMA)-co-p(HEMA)) and methyl acrylate-co-hydroxyethyl acrylate (p(MA)-co-p(HEA)) were designed and synthesized by reverse atom transfer radical polymerization (reverse-ATRP) and copper-mediated living radical polymerization (Cu0-MC-LRP), respectively. The copolymers were characterized by nuclear magnetic resonance (1H-NMR) spectroscopy and by triple detection gel permeation chromatography (GPC). The polarity, topology, and molecular weight of the copolymers were perfectly adjusted. The polymeric blend formed by (MMA)1002-co-(HEMA)1002 (M w = 230,855 ± 7418 Da; M n = 115,748 ± 35,567 Da; PDI = 2.00) and (MA)11709-co-(HEA)7806 (M w = 1.972 × 106 ± 33,729 Da; M n = 1.395 × 106 ± 35,019 Da; PDI = 1.41) was used to manufacture (without additives or chemical crosslinking processes) hydroxylated nonwoven nanofiber membranes (NV-NF-Ms-OH; 300 nm in fiber diameter) with excellent mechanical and chemical properties. The morphology of NV-NF-Ms-OH was studied by scanning electron microscopy (SEM). The suitability for enzyme binding was proven by designing a palette of different surface functionalization to enable both reversible and irreversible enzyme immobilization. NV-NF-Ms-OH were successfully functionalized with vinyl sulfone (281 ± 20 μmol/g), carboxyl (560 ± 50 μmol/g), and amine groups (281 ± 20 μmol/g) and applied for the immobilization of two enzymes of biotechnological interest. Galactose oxidase was immobilized on vinyl sulfone-activated materials and carboxyl-activated materials, while laccase was immobilized onto amine-activated materials. These preliminary results are a promising basis for the application of nonwoven membranes in enzyme technology.
Collapse
Affiliation(s)
- Antonio L. Medina-Castillo
- Nanomateriales
y Polimeros S.L. (NanoMyP®), Spin-Off Company of the University
of Granada, BIC Building,
Avd. Innovacion 1, E-18016 Granada, Spain
- Department
of Analytical Chemistry, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain
| | - Lucija Ruzic
- Nanomateriales
y Polimeros S.L. (NanoMyP®), Spin-Off Company of the University
of Granada, BIC Building,
Avd. Innovacion 1, E-18016 Granada, Spain
- FQPIMA
Group, Chemical and Materials Engineering Department, Faculty of Chemical
Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| | - Bernd Nidetzky
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
- Austrian
Centre of Industrial Biotechnology, Krenngasse 37, A-8010 Graz, Austria
| | - Juan M. Bolivar
- FQPIMA
Group, Chemical and Materials Engineering Department, Faculty of Chemical
Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
6
|
Commarieu B, Compaoré M, de Boëver R, Imbeault R, Leprince M, Martin B, Perard B, Qiu W, Claverie JP. Ultra-High T g Thermoset Fibers Obtained by Electrospinning of Functional Polynorbornenes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:967. [PMID: 35335779 PMCID: PMC8951598 DOI: 10.3390/nano12060967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/05/2023]
Abstract
Insertion polynorbornenes (PBNEs) are rigid-rod polymers that have very high glass transition temperatures (Tg). In this study, two functional PNBEs were electrospun in the presence of a variety of cross-linkers, resulting in fibers with Tgs greater than 300 °C. The fibers are long (several mm), rigid, and with diameters that can be tuned in the range 300 nm-10 μm. The electrospinning process can be used to encapsulate dyes or graphene dots. Due to the high cross-linking density of the fiber, dye leaching is prevented. In contrast with other rigid-rod polymers, electrospinning of PNBE is facile and can be performed at injection rates as high as 1 mL/min.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jerome P. Claverie
- Quebec Center for Functional Materials, Department of Chemistry, Université de Sherbrooke, 2500 Blvd de l’Université, Sherbrooke, QC J1K2R1, Canada; (B.C.); (M.C.); (R.d.B.); (R.I.); (M.L.); (B.M.); (B.P.); (W.Q.)
| |
Collapse
|
7
|
Hamnca S, Chamier J, Grant S, Glass T, Iwuoha E, Baker P. Spectroscopy, Morphology, and Electrochemistry of Electrospun Polyamic Acid Nanofibers. Front Chem 2022; 9:782813. [PMID: 35252124 PMCID: PMC8889449 DOI: 10.3389/fchem.2021.782813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
Polyamic acid (PAA) nanofibers produced by using the electrospinning method were fully characterized in terms of morphology and spectroscopy. A PAA nanofiber–modified screen-printed carbon electrode was applied to the detection of selected sulfonamides by following an electroanalytical protocol. The polyamic acid (PAA) nanofibers were characterized using Fourier transform infrared (FTIR) spectroscopy to study the integrity of polyamic acid functional groups as nanofibers by comparing them to chemically synthesized polyamic acid. A scanning electron microscope (SEM) was used to confirm the morphology of the produced nanofibers and 3D arrangement at the electrode interface. The Brunauer–Emmett–Teller (BET) method was used to determine the surface area of the nanofibers. Atomic force microscopy (AFM) was used to study the porosity and surface roughness of the nanofibers. Electrochemical evaluation based on diffusion-controlled kinetics was applied to determine the number of electrons transferred in the system, the surface concentration of the deposited PAA thin film (2.14 × 10−6 mol/cm2), and the diffusion coefficient (De) for the PAA nanofiber–modified screen-printed carbon electrode (9.43 × 10−7 cm−2/s). The reported LODs for sulfadiazine and sulfamethazine detection are consistent with requirements for trace-level monitoring by early warning diagnostic systems.
Collapse
Affiliation(s)
- Siyabulela Hamnca
- SensorLab, Chemistry Department, University of the Western Cape, Bellville, South Africa
- *Correspondence: Siyabulela Hamnca, ; Priscilla Baker,
| | - Jessica Chamier
- HySA Catalysis, Department of Chemical Engineering, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Sheila Grant
- Chemistry Department, University of Missouri, Columbia, MO, United states
| | - Timothy Glass
- Chemistry Department, University of Missouri, Columbia, MO, United states
| | - Emmanuel Iwuoha
- SensorLab, Chemistry Department, University of the Western Cape, Bellville, South Africa
| | - Priscilla Baker
- SensorLab, Chemistry Department, University of the Western Cape, Bellville, South Africa
- *Correspondence: Siyabulela Hamnca, ; Priscilla Baker,
| |
Collapse
|
8
|
Stimuli-responsive electrospun nanofibers based on PNVCL-PVAc copolymer in biomedical applications. Prog Biomater 2021; 10:245-258. [PMID: 34731487 DOI: 10.1007/s40204-021-00168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/01/2021] [Indexed: 10/19/2022] Open
Abstract
Poly(N-vinylcaprolactam) (PNVCL) is a suitable alternative for biomedical applications due to its biocompatibility, biodegradability, non-toxicity, and showing phase transition at the human body temperature range. The purpose of this study was to synthesize a high molecular weight PNVCL-PVAc thermo-responsive copolymer with broad mass distribution suitable for electrospun nanofiber fabrication. The chemical structure of the synthesized materials was detected by FTIR and 1HNMR spectroscopies. N-Vinyl caprolactam/vinyl acetate copolymers (159,680 molecular weight (g/mol) and 2.51 PDI) were synthesized by radical polymerization. The phase transition temperature of N-vinyl caprolactam/vinyl acetate copolymer was determined by conducting a contact angle test at various temperatures (25, 26, 28, and 30 [Formula: see text]). The biocompatibility of the nanofibers was also evaluated, and both qualitative and quantitative results showed that the growth and proliferation of 929L mouse fibroblast cells increased to 80% within 48 h. These results revealed that the synthesized nanofibers were biocompatible and not cytotoxic. The results confirmed that the synthesized copolymers have good characteristics for biomedical applications.
Collapse
|
9
|
Meng X, Du Y, Liu Y, Coughlin EB, Perry SL, Schiffman JD. Electrospinning Fibers from Oligomeric Complex Coacervates: No Chain Entanglements Needed. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiangxi Meng
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - Yifeng Du
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - Yalin Liu
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - E. Bryan Coughlin
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - Sarah L. Perry
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - Jessica D. Schiffman
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| |
Collapse
|
10
|
Konchada S, Killi N, Sayyad S, Gathalkar GB, Gundloori RVN. Blends of neem oil based polyesteramide as nanofiber mats to control Culicidae. RSC Adv 2020; 10:42827-42837. [PMID: 35514911 PMCID: PMC9057958 DOI: 10.1039/d0ra08297j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
Mosquitoes act as vectors for several disease-causing microorganisms and pose a threat to mankind by transmitting various diseases. There are different conventional methods to repel or kill these mosquitoes for avoiding susceptibility against infections. However, to overcome the difficulties with conventional methods, new advanced materials are being studied. For the first time, we report developing a nanofiber mat with a controlled release of insecticide to repel or detain the mosquitoes. Briefly, various blend compositions were prepared by manipulating the ratio of neem oil-based polyesteramide (PEA) and polycaprolactone (PCL) immobilized with insecticide, transfluthrin (Tf). The blend solutions were electrospun to get non-woven nanofiber mats, and these nanomaterials were characterized by various spectroscopic techniques to understand their physicochemical properties. The surface morphology was analyzed using environmental scanning electron microscopy (E-SEM), and the diameter of the nanofibers was in the range of 200 to 450 nm. Further, thermal and mechanical properties were evaluated to understand the stability of nanofiber mats. In vitro drug release studies of nanofiber mat PPT-1335 showed controlled and sustained release of Tf, with ∼35% of Tf released in 24 h. However, a film of the same composition (PPT-1335) showed ∼5% of Tf release within 24 h. Moreover, in vivo bio-efficacy studies suggested the mortality of mosquitoes was about 50% with PP-133, which was further increased to 100% within 12 h in the presence of Tf (PPT-1335). However, 60% mortality of mosquitoes was observed with the film of PPT-1335. Hence, the nanofiber mat showed better efficacy against mosquitoes as compared to the film of the same composition. The degradation studies under various conditions revealed biocompatibility of the developed nanofiber mats with the ecosystem. Electrospun nanofiber mats immobilized with transfluthrin to control mosquitoes.![]()
Collapse
Affiliation(s)
- Sravanya Konchada
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune-411008 Maharashtra India
| | - Naresh Killi
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune-411008 Maharashtra India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 Uttar Pradesh India
| | - Shahebaz Sayyad
- Laboratory of Entomology, Division of Organic Chemistry, CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune-411008 Maharashtra India
| | - Ganesh B Gathalkar
- Laboratory of Entomology, Division of Organic Chemistry, CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune-411008 Maharashtra India.,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 Uttar Pradesh India
| | - Rathna V N Gundloori
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune-411008 Maharashtra India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 Uttar Pradesh India
| |
Collapse
|
11
|
Electrospinnability of hydrogen bonded supramolecular comb polymers based on Poly(4-vinylpyridine) and 3-pentadecylphenol. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Electrospinning of biocompatible alginate-based nanofiber membranes via tailoring chain flexibility. Carbohydr Polym 2020; 230:115665. [DOI: 10.1016/j.carbpol.2019.115665] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 12/27/2022]
|
13
|
Topuz F, Satilmis B, Uyar T. Electrospinning of uniform nanofibers of Polymers of Intrinsic Microporosity (PIM-1): The influence of solution conductivity and relative humidity. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121610] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Wang Y, Chou J, Sun Y, Wen S, Vasilescu S, Zhang H. Supramolecular-based nanofibers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:650-659. [DOI: 10.1016/j.msec.2019.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 01/01/2023]
|
15
|
Malpani D, Majumder A, Samanta P, Srivastava RK, Nandan B. Supramolecular Route for Enhancing Polymer Electrospinnability. ACS OMEGA 2018; 3:15666-15678. [PMID: 31458222 PMCID: PMC6643600 DOI: 10.1021/acsomega.8b02029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/29/2018] [Indexed: 06/10/2023]
Abstract
Electrospinning of polymers typically requires high solution concentrations necessitated by the requirement of sufficient chain overlaps to achieve the required viscoelastic properties. Here, we report on a novel supramolecular approach, involving polymer/surfactant complexes, which allows for a significant reduction in the solution concentration of polymer for electrospinning. The approach involved supramolecular complexation of poly(4-vinylpyridine) (P4VP) with a surfactant, dodecylbenzenesulfonic acid (DBSA), via ionic interactions. The supramolecular complexation of P4VP with DBSA led to a significant increase in the solution viscosity even at a DBSA/4VP molar ratio as low as 0.05. Furthermore, the solution viscosity of the P4VP/DBSA complex increased significantly with the DBSA/4VP molar ratio. The increase in the viscosity for the P4VP/DBSA complexes was plausibly due to the formation of physical cross-links between P4VP chains driven by hydrophobic interactions between the surfactant tails. The formation of such physical cross-links led to a significant decrease in the solution concentration needed for the onset of semidilute entangled regime. Thus, the P4VP/DBSA complexes could be electrospun at a much lower concentration. The critical solution concentration to obtain bead-free uniform nanofibers of P4VP/DBSA complexes in dimethylformamide was reduced to 12% (w/v), which was not possible for neat P4VP solution even up to approximately 35% (w/v). Furthermore, small-angle X-ray scattering and polarized optical microscopy results revealed that the electrospun nanofibers of P4VP/DBSA complexes self-assembled in lamellar mesomorphic structures similar to that observed in bulk. However, the electrospun nanofibers exhibited significantly improved lamellar order, which was plausibly facilitated by the preferred orientation of P4VP chains along the fiber axis.
Collapse
|
16
|
Plasma Modification of Poly Lactic Acid Solutions to Generate High Quality Electrospun PLA Nanofibers. Sci Rep 2018; 8:2241. [PMID: 29396416 PMCID: PMC5797159 DOI: 10.1038/s41598-018-20714-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/23/2018] [Indexed: 11/09/2022] Open
Abstract
Physical properties of pre-electrospinning polymer solutions play a key role in electrospinning as they strongly determine the morphology of the obtained electrospun nanofibers. In this work, an atmospheric-pressure argon plasma directly submerged in the liquid-phase was used to modify the physical properties of poly lactic acid (PLA) spinning solutions in an effort to improve their electrospinnability. The electrical characteristics of the plasma were investigated by two methods; V-I waveforms and Q-V Lissajous plots while the optical emission characteristics of the plasma were also determined using optical emission spectroscopy (OES). To perform a complete physical characterization of the plasma-modified polymer solutions, measurements of viscosity, surface tension, and electrical conductivity were performed for various PLA concentrations, plasma exposure times, gas flow rates, and applied voltages. Moreover, a fast intensified charge-couple device (ICCD) camera was used to image the bubble dynamics during the plasma treatments. In addition, morphological changes of PLA nanofibers generated from plasma-treated PLA solutions were observed by scanning electron microscopy (SEM). The performed plasma treatments were found to induce significant changes to the main physical properties of the PLA solutions, leading to an enhancement of electrospinnability and an improvement of PLA nanofiber formation.
Collapse
|
17
|
Thakkar S, Misra M. Electrospun polymeric nanofibers: New horizons in drug delivery. Eur J Pharm Sci 2017; 107:148-167. [DOI: 10.1016/j.ejps.2017.07.001] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/23/2017] [Accepted: 07/02/2017] [Indexed: 01/15/2023]
|
18
|
Preparation and characterisation of open-celled foams using polystyrene-b-poly(4-vinylpyridine) and poly(4-methylstyrene)-b-poly(4-vinylpyridine) diblock copolymers. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Killi N, Dhakare RA, Singam A, Lokanadham M, Chitikeshi H, Gundloori RVN. Design and fabrication of mechanically strong nano-matrices of linseed oil based polyesteramide blends. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00380j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioactive and mechanically strong nano-matrices of oil based polyesteramide blends as biomaterials.
Collapse
Affiliation(s)
- Naresh Killi
- Polymer Science and Engineering Division
- CSIR-National Chemical Laboratory
- Pune
- India
| | - Runali Arjun Dhakare
- Polymer Science and Engineering Division
- CSIR-National Chemical Laboratory
- Pune
- India
| | - Amarnath Singam
- Polymer Science and Engineering Division
- CSIR-National Chemical Laboratory
- Pune
- India
| | - Metta Lokanadham
- Polymer Science and Engineering Division
- CSIR-National Chemical Laboratory
- Pune
- India
| | | | | |
Collapse
|