1
|
Xu W, Zheng Y, Pan P. Crystallization‐driven self‐assembly of semicrystalline block copolymers and end‐functionalized polymers: A minireview. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wenqing Xu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Ying Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Zhejiang University—Quzhou Quzhou China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Zhejiang University—Quzhou Quzhou China
| |
Collapse
|
2
|
Ming Y, Zhou Z, Hao T, Nie Y. Molecular simulation of polymer crystallization under chain and space confinement. Phys Chem Chem Phys 2021; 23:17382-17391. [PMID: 34350912 DOI: 10.1039/d1cp01799c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymer crystallization under chain and space confinements is studied by Monte Carlo simulation. The simulation results show that the crystallinity and melting temperature of confined systems increase with the increase of free chain content. Furthermore, the crystallinity and melting temperature of confined systems with larger lateral size are higher than those with smaller lateral size. These findings are in good agreement with the conclusions obtained in some experiments. An important phenomenon that cannot be observed in experiments has been confirmed, that is, the tethering point can be used as the nucleation site. For the confined polymer system with the lateral size of 8 lattice points, with the increase of free chain content, the surface free energy of the nuclei and the diffusion activation energy of the chains decrease due to the combined effects of chain conformation size and chain movement ability, which leads to the enhancement of the nucleation ability of polymers. However, for the confined polymer system with lateral size of 12 lattice points, with the increase of free chain content, the nucleation sites decrease and the critical free energy barrier increases, which are not conducive to nucleation. Moreover, the existence of interfacial interactions can also significantly change the crystallization of confined polymers. Our results indicate the crystallization kinetics of the confined polymer from a microscopic point of view.
Collapse
Affiliation(s)
- Yongqiang Ming
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | | | | | | |
Collapse
|
3
|
Kikuchi H, Watanabe T, Marubayashi H, Ishizone T, Nojima S, Yamaguchi K. Control of crystal orientation of spatially confined PCL homopolymers by cleaving chain-ends of PCL blocks tethered to nanolamella interfaces. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
Su C, Chen Y, Shi G, Li T, Liu G, Müller AJ, Wang D. Crystallization Kinetics of Poly(ethylene oxide) under Confinement in Nanoporous Alumina Studied by in Situ X-ray Scattering and Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11799-11808. [PMID: 31407905 DOI: 10.1021/acs.langmuir.9b01968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While a relatively complete understanding of the nucleation and orientation of polymers under confinement in one-dimensional nanochannels has been achieved, crystallization kinetics investigation of confined polymers is still rare. In this work, we investigated the crystallization kinetics of poly(ethylene oxide) confined in anodic alumina oxide templates with different pore sizes using in situ wide-angle X-ray scattering (WAXS). The crystallization kinetics results were fitted with the Avrami equation. The Avrami index was determined by both "isothermal step crystallization" and in situ WAXS. The crystallization process of polymers under one-dimensional nanopore confinement was simulated by a "one-dimensional lattice model". Based on this model, it is shown that homogeneous nucleation with the simultaneous growth of multiple crystal planes with drastically different growth rates could result in Avrami indexes lower than 1.
Collapse
Affiliation(s)
- Cui Su
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yu Chen
- Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Guangyu Shi
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Tang Li
- Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Alejandro J Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry , University of the Basque Country UPV/EHU , Paseo Manuel de Lardizabal 3 , 20018 Donostia-San Sebastián , Spain
- IKERBASQUE, Basque Foundation for Science , 48013 Bilbao , Spain
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
5
|
Okabayashi R, Ohta Y, Yokozawa T. Synthesis of Block Copolymers of Polyester and Polystyrene by Means of Cross-Metathesis of Cyclic Unsaturated Polyester and Atom Transfer Radical Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryouichi Okabayashi
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Yoshihiro Ohta
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Tsutomu Yokozawa
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| |
Collapse
|
6
|
Combined effects of confinement size and chain-end tethering on the crystallization of poly(ε-caprolactone) chains in nanolamellae. POLYMER 2019. [DOI: 10.1016/j.polymer.2018.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Van Horn RM, Steffen MR, O'Connor D. Recent progress in block copolymer crystallization. POLYMER CRYSTALLIZATION 2018. [DOI: 10.1002/pcr2.10039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ryan M. Van Horn
- Department of Chemistry Allegheny College Meadville Pennsylvania
| | | | - Dana O'Connor
- Department of Chemistry Allegheny College Meadville Pennsylvania
| |
Collapse
|
8
|
Sun Y, Wang Q, Zhang S, Li H, Zhang J, Li D, Li W. Synthesis of aromatic-doped polycaprolactone with tunable degradation behavior. Polym Chem 2018. [DOI: 10.1039/c8py00374b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel aromatic-doped polycaprolactone (Aro-PCL) material was synthesized through a facile PCL aminolysis-condensation polymerization incorporating the aromatic moiety to PCL chain and assessed by focusing on the dynamic aggregation and crystalline microdomains associated with the in vitro degradation properties, mechanical performance and biocompatibility.
Collapse
Affiliation(s)
- Yawei Sun
- School of Chemical Engineering & Technology
- Tianjin University
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
- Tianjin 300350
- P. R. China
| | - Qiuyan Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research
- Chinese Ministry of Education and Chinese Ministry of Health
- Qilu Hospital
- Shandong University
- Jinan 250061
| | - Shuying Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research
- Chinese Ministry of Education and Chinese Ministry of Health
- Qilu Hospital
- Shandong University
- Jinan 250061
| | - Hao Li
- Key Laboratory of Cardiovascular Remodeling and Function Research
- Chinese Ministry of Education and Chinese Ministry of Health
- Qilu Hospital
- Shandong University
- Jinan 250061
| | - Jinli Zhang
- School of Chemical Engineering & Technology
- Tianjin University
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
- Tianjin 300350
- P. R. China
| | - Daqing Li
- Key Laboratory of Cardiovascular Remodeling and Function Research
- Chinese Ministry of Education and Chinese Ministry of Health
- Qilu Hospital
- Shandong University
- Jinan 250061
| | - Wei Li
- School of Chemical Engineering & Technology
- Tianjin University
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
- Tianjin 300350
- P. R. China
| |
Collapse
|
9
|
Zou SF, Wang RY, Fan B, Xu JT, Fan ZQ. Effect of interface and confinement size on the crystallization behavior of PLLA confined in coaxial electrospun fibers. J Appl Polym Sci 2017. [DOI: 10.1002/app.45980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shu-Fen Zou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering; Zhejiang University; Hangzhou 310027 China
| | - Rui-Yang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering; Zhejiang University; Hangzhou 310027 China
| | - Bin Fan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering; Zhejiang University; Hangzhou 310027 China
| | - Jun-Ting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering; Zhejiang University; Hangzhou 310027 China
| | - Zhi-Qiang Fan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
10
|
Interplay of microphase separation, crystallization and liquid crystalline ordering in crystalline/liquid crystalline block copolymers. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.09.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Kawazu K, Nakagawa S, Ishizone T, Nojima S, Arai D, Yamaguchi K, Nakahama S. Effects of Bulky End-Groups on the Crystallization Kinetics of Poly(ε-caprolactone) Homopolymers Confined in a Cylindrical Nanodomain. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Koshun Kawazu
- Department of Chemical Science
and Engineering, Tokyo Institute of Technology, H-125, 2-12-1 Ookayama Meguro-Ku, Tokyo 152-8552, Japan
| | - Shintaro Nakagawa
- Department of Chemical Science
and Engineering, Tokyo Institute of Technology, H-125, 2-12-1 Ookayama Meguro-Ku, Tokyo 152-8552, Japan
| | - Takashi Ishizone
- Department of Chemical Science
and Engineering, Tokyo Institute of Technology, H-125, 2-12-1 Ookayama Meguro-Ku, Tokyo 152-8552, Japan
| | - Shuichi Nojima
- Department of Chemical Science
and Engineering, Tokyo Institute of Technology, H-125, 2-12-1 Ookayama Meguro-Ku, Tokyo 152-8552, Japan
| | - Daiki Arai
- Department
of Chemistry, Faculty of Science, and ‡Research Institute for Photofunctionalized
Materials, Kanagawa University, 2941 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
| | - Kazuo Yamaguchi
- Department
of Chemistry, Faculty of Science, and ‡Research Institute for Photofunctionalized
Materials, Kanagawa University, 2941 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
| | - Seiichi Nakahama
- Department
of Chemistry, Faculty of Science, and ‡Research Institute for Photofunctionalized
Materials, Kanagawa University, 2941 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
| |
Collapse
|
12
|
Zhao W, Su Y, Müller AJ, Gao X, Wang D. Direct Relationship Between Interfacial Microstructure and Confined Crystallization in Poly(Ethylene Oxide)/Silica Composites: The Study of Polymer Molecular Weight Effects. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/polb.24418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Weiwei Zhao
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yunlan Su
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 China
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department; Faculty of Chemistry, University of the Basque Country UPV/EHU; Paseo Manuel de Lardizabal 3, Donostia-San Sebastia'n 20018 Spain
- IKERBASQUE, Basque Foundation for Science; Bilbao Spain
| | - Xia Gao
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 China
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
13
|
Crystal orientation of poly(ε-caprolactone) chains confined in lamellar nanodomains: Effects of chain-ends tethering to nanodomain interfaces. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.01.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Samanta P, Srivastava R, Nandan B, Chen HL. Crystallization behavior of crystalline/crystalline polymer blends under confinement in electrospun nanofibers of polystyrene/poly(ethylene oxide)/poly(ε-caprolactone) ternary mixtures. SOFT MATTER 2017; 13:1569-1582. [PMID: 28127604 DOI: 10.1039/c6sm02748b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We have studied the crystallization behavior of crystalline/crystalline blends of poly(ethylene oxide) (PEO) and poly(ε-caprolactone) (PCL) in electrospun nanofibers fabricated from ternary blends of polystyrene (PS), PEO, and PCL, where PS was present as the majority component. It was demonstrated previously that PEO in PS/PEO binary blend nanofibers with a low PEO weight fraction (≦0.2) crystallized predominantly through homogenous nucleation due to the small PEO domain size which excluded the presence of heterogeneities (Soft Matter, 2016, 12, 5110). Here, it was found that PCL in PS/PCL binary blend nanofibers exhibited similar behavior, but at a much lower weight fraction of PCL (≦0.1) due to the presence of an inherently higher concentration of heterogeneities in the PCL homopolymer. In the PS/PEO/PCL ternary blend nanofibers, where the combined weight fraction of PEO and PCL was kept at 0.2 or less, the crystallization of the two components took place separately through both heterogeneous and homogenous nucleation mechanisms. The phase segregated crystallization behavior was further confirmed by the melting behavior of the blend nanofibers and wide angle X-ray diffraction (WAXD) measurements. Most significantly, the homogenous nucleation of both PEO and PCL was suppressed whereas the heterogeneous nucleation was enhanced in the ternary blend nanofibers even at very low weight fraction of PEO or PCL. This was plausibly attributed to the coupling between the crystallization and the liquid-liquid phase separation (LLPS) of the PEO/PCL mixture dispersed in the PS matrix during non-isothermal cooling of the blend nanofibers. Furthermore, it was observed that thermal treatment of the PS/PEO/PCL blend nanofibers above the glass transition temperature of PS further promoted the heterogeneous nucleation-initiated crystallization of PEO because of a complex interplay between Plateau-Rayleigh instability-induced domain breakup and its further coalescence and demixing within the PEO/PCL domains embedded in the PS matrix.
Collapse
Affiliation(s)
- Pratick Samanta
- Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Rajiv Srivastava
- Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Bhanu Nandan
- Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Hsin-Lung Chen
- Department of Chemical Engineering and Frontier Centre of Fundamental and Applied Sciences of Matters, National Tsing-Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|