1
|
Hosseini M, Gresham IJ, Prescott SW, Spicer PT. Responsive nanocellulose-PNIPAM millicapsules. J Colloid Interface Sci 2025; 678:378-387. [PMID: 39255595 DOI: 10.1016/j.jcis.2024.08.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
HYPOTHESIS Milli- and micro-capsules are developed to facilitate the controlled release of diverse active ingredients by passive diffusion or a triggered burst. As applications expand, capsules are required to be increasingly multi-functional, combining benefits like encapsulation, response, release, and even movement. Balancing the increasingly complex demands of capsules is a desire to minimize material usage, requiring efficient structural and chemical design. Designing multifunctional capsules with complex deformation should be possible even after minimizing the material usage through use of sparse fiber networks if the fibers are coated with responsive polymers. EXPERIMENTS Here capsules are created with a shell made from a mesh of nanoscale bacterial cellulose fibers that provide mechanical strength at very low mass levels, while a coating of thermoresponsive Poly(N-isopropylacrylamide), PNIPAM, on the fibers provides control of permeability, elastic response, and temperature response. These properties are varied by grafting different amounts of polymer using particular reaction conditions. FINDINGS The addition of PNIPAM to the cellulose mesh capsule enhances its mechanical properties, enabling it to undergo large deformations and recover once stress is removed. The increased elastic response of the capsule also provides reinforcement against drying-induced capillary stresses, limiting the degree of shrinkage during dehydration. Time-lapse microscopy demonstrates thermoreversible swelling of the capsules in response to temperature change. Cycles of swelling and shrinkage drive solvent convection to and from the capsule interior, allowing exchange of contents and mixing with the bulk fluid on a time scale of seconds. Because the cellulose capsules are produced via emulsion-templated fermentation, the polymer-modified biocapsule concept introduced here presents a pathway toward the sustainable and scalable manufacture of multifunctional responsive capsules.
Collapse
Affiliation(s)
- Maryam Hosseini
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Isaac J Gresham
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Stuart W Prescott
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Patrick T Spicer
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Robertson H, Gresham IJ, Nelson ARJ, Prescott SW, Webber GB, Wanless EJ. Illuminating the nanostructure of diffuse interfaces: Recent advances and future directions in reflectometry techniques. Adv Colloid Interface Sci 2024; 331:103238. [PMID: 38917595 DOI: 10.1016/j.cis.2024.103238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Diffuse soft matter interfaces take many forms, from end-tethered polymer brushes or adsorbed surfactants to self-assembled layers of lipids. These interfaces play crucial roles across a multitude of fields, including materials science, biophysics, and nanotechnology. Understanding the nanostructure and properties of these interfaces is fundamental for optimising their performance and designing novel functional materials. In recent years, reflectometry techniques, in particular neutron reflectometry, have emerged as powerful tools for elucidating the intricate nanostructure of soft matter interfaces with remarkable precision and depth. This review provides an overview of selected recent developments in reflectometry and their applications for illuminating the nanostructure of diffuse interfaces. We explore various principles and methods of neutron and X-ray reflectometry, as well as ellipsometry, and discuss advances in their experimental setups and data analysis approaches. Improvements to experimental neutron reflectometry methods have enabled greater time resolution in kinetic measurements and elucidation of diffuse structure under shear or confinement, while innovation in analysis protocols has significantly reduced data processing times, facilitated co-refinement of reflectometry data from multiple instruments and provided greater-than-ever confidence in proposed structural models. Furthermore, we highlight some significant research findings enabled by these techniques, revealing the organisation, dynamics, and interfacial phenomena at the nanoscale. We also discuss future directions and potential advancements in reflectometry techniques. By shedding light on the nanostructure of diffuse interfaces, reflectometry techniques enable the rational design and tailoring of interfaces with enhanced properties and functionalities.
Collapse
Affiliation(s)
- Hayden Robertson
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; Soft Matter at Interfaces, Technical University of Darmstadt, Darmstadt D-64289, Germany
| | - Isaac J Gresham
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew R J Nelson
- Australian Centre for Neutron Scattering, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Stuart W Prescott
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Grant B Webber
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Erica J Wanless
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
3
|
Piccoli V, Martínez L. Competitive Effects of Anions on Protein Solvation by Aqueous Ionic Liquids. J Phys Chem B 2024; 128:7792-7802. [PMID: 39092664 PMCID: PMC11331513 DOI: 10.1021/acs.jpcb.4c03735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The present study utilizes molecular dynamics simulations to examine how different anions compete for protein solvation in aqueous solutions of ionic liquids (ILs). Ubiquitin is used as model protein and studied in IL mixtures sharing the same cation, 1-ethyl-3-methylimidazolium (EMIM), and two different anions in the same solution, from combinations of dicyanamide (DCA), chloride (Cl), nitrate (NO3), and tetrafluoroborate (BF4). Our findings reveal that specific interactions between anions and the protein are paramount in IL solvation, but that combinations of anions are not additive. For example, DCA exhibits a remarkable ability to form hydrogen bonds with the protein, resulting in a significantly stronger preferential binding to the protein than other anions. However, the combination of DCA with NO3, which also forms hydrogen bonds with the protein, results in a smaller preferential solvation of the protein than the combination of DCA with chloride ions, which are weaker binders. Thus, combining anions with varying affinities for the protein surface modulates the overall ion accumulation through nonadditive mechanisms, highlighting the importance of the understanding of competition for specific interaction sites, cooperative binding, bulk-solution affinity, and overall charge compensations, on the overall solvation capacity of the solution. Such knowledge may allow for the design of novel IL-based processes in biotechnology and material science, where fine-tuning protein solvation is crucial for optimizing performance and functionality.
Collapse
Affiliation(s)
- Vinicius Piccoli
- Institute of Chemistry and
Center for Computing in Engineering & Science, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
| | - Leandro Martínez
- Institute of Chemistry and
Center for Computing in Engineering & Science, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-872, SP, Brazil
| |
Collapse
|
4
|
Zhu Y, Hou J, Gray DM, McDonald TO, Dumanli AG. Cation-induced morphological transitions and aggregation of thermoresponsive PNIPAM nanogels. Heliyon 2024; 10:e32184. [PMID: 39021897 PMCID: PMC11252870 DOI: 10.1016/j.heliyon.2024.e32184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAM) nanogels are promising responsive colloidal particles that can be used in pharmaceutical applications as drug carriers. This work investigates the temperature-dependent morphological changes and agglomeration of PNIPAM nanogels in the presence of mono- and multi-valent cationic electrolytes. We described the deswelling, flocculation, thermal reversibility behaviour and aggregated morphology of PNIPAM nanogels over a range of electrolyte concentrations and temperatures revealing the critical transition points from stable suspension to spontaneous agglomeration. We demonstrated that the flocculating ability and the rate of aggregate formation follow the order of deswelling behaviour. Transmission electron microscopy and atomic force microscopy analysis revealed the presence of a shell-like layer with varying density in the multivalent electrolyte solutions when compared to those in aqueous medium. We identified a concentration threshold of the thermally induced reversible aggregation/dispersion for the PNIPAM nanogels in the presence of Na+ and K+ ions at 10 mM, for Mg2+ and Ca2+ ions at 1 mM and for Al3+ ions at 0.1 mM concentrations. Such concentration thresholds indicated the effective destabilization of the electrolyte system with multivalency following the Schulze-Hardy rule. Our findings were supported by applying a Debye screening model that accounts for the shielding effect of multivalent cationic electrolytes on these nanogel systems. Our experiments and the models confirmed the compression of the electric double layer as the valency and ionic strength increased, except for Al3+ at higher concentrations which seemed to disrupt the electrical double layer and cause reversal of zeta potential. Our work highlights the significant impact the presence of multivalent cations can impose on the stability and morphology of nanogels, and this understanding will help in designing responsive nanogel systems based on PNIPAM nanogels.
Collapse
Affiliation(s)
- Yuchen Zhu
- Department of Materials, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
- Henry Royce Institute, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| | - Jiaxin Hou
- Department of Materials, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
- Henry Royce Institute, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| | - Dominic M. Gray
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Tom O. McDonald
- Department of Materials, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
- Henry Royce Institute, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Ahu Gümrah Dumanli
- Department of Materials, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
- Henry Royce Institute, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| |
Collapse
|
5
|
Gresham IJ, Johnson EC, Robertson H, Willott JD, Webber GB, Wanless EJ, Nelson ARJ, Prescott SW. Comparing polymer-surfactant complexes to polyelectrolytes. J Colloid Interface Sci 2024; 655:262-272. [PMID: 37944374 DOI: 10.1016/j.jcis.2023.10.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
HYPOTHESIS Understanding the complex interactions between polymers and surfactants is required to optimise commercially relevant systems such as paint, toothpaste and detergent. Neutral polymers complex with surfactants, forming 'pearl necklace' structures that are often conceptualised as pseudo-polyelectrolytes. Here we pose two questions to test the limits of this analogy: Firstly, in the presence of salt, do these polymer-surfactant systems behave like polyelectrolytes? Secondly, do polymer-surfactant complexes resist geometric confinement like polyelectrolytes? EXPERIMENTS We test the limits of the pseudo-polyelectrolyte analogy through studying a poly(N-isopropylacrylamide) (PNIPAM) brush in the presence of sodium dodecylsulfate (SDS). Brushes are ideal for interrogating pseudo-polyelectrolytes, as neutral and polyelectrolyte brushes exhibit distinct and well understood behaviours. Spectroscopic ellipsometry, quartz crystal microbalance with dissipation monitoring (QCM-D), and neutron reflectometry (NR) were used to monitor the behaviour and structure of the PNIPAM-SDS system as a function of NaCl concentration. The ability of the PNIPAM-SDS complex to resist geometric confinement was probed with NR. FINDINGS At a fixed SDS concentration below the zero-salt CMC, increasing NaCl concentration <100 mM promoted brush swelling due to an increase in osmotic pressure, not dissimilar to a weak polyelectrolyte. At these salt concentrations, the swelling of the brush could be described by a single parameter: the effective CMC. However, at high NaCl concentrations (e.g., 500 mM) no brush collapse was observed at all (non-zero) concentrations of SDS studied, contrary to what is seen for many polyelectrolytes. Study of the polymer-surfactant system under confinement revealed that the physical volume of surfactant dominates the structure of the strongly confined system, which further differentiates it from the polyelectrolyte case.
Collapse
Affiliation(s)
- Isaac J Gresham
- School of Chemical Engineering, UNSW Sydney, Sydney, 2052, NSW, Australia
| | - Edwin C Johnson
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, 2308, NSW, Australia
| | - Hayden Robertson
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, 2308, NSW, Australia
| | - Joshua D Willott
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, 2308, NSW, Australia
| | - Grant B Webber
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, 2308, NSW, Australia
| | - Erica J Wanless
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, 2308, NSW, Australia
| | | | - Stuart W Prescott
- School of Chemical Engineering, UNSW Sydney, Sydney, 2052, NSW, Australia.
| |
Collapse
|
6
|
Robertson H, Gresham IJ, Nelson ARJ, Gregory KP, Johnson EC, Willott JD, Prescott SW, Webber GB, Wanless EJ. Solvent-Modulated Specific Ion Effects: Poly( N-isopropylacrylamide) Brushes in Nonaqueous Electrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:335-347. [PMID: 38117209 PMCID: PMC10910595 DOI: 10.1021/acs.langmuir.3c02596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Pertinent to cryopreservation as well as energy storage and batteries, nonaqueous electrolytes and their mixtures with water were investigated. In particular, specific ion-induced effects on the modulation of a poly(N-isopropylacrylamide) (PNIPAM) brush were investigated in various dimethyl sulfoxide (DMSO)-water solvent mixtures. Spectroscopic ellipsometry and neutron reflectometry were employed to probe changes in brush swelling and structure, respectively. In water-rich solvents (i.e., pure water and 6 mol % DMSO), PNIPAM undergoes a swollen to collapsed thermotransition with increasing temperature, whereby a forward Hofmeister series was noted; K+ and Li+ electrolytes composed of SCN- and I- salted-in (stabilized) PNIPAM chains, and electrolytes of Cl- and Br- salted-out (destabilized) the polymer. The cation was seen to play a lesser role than that of the anion, merely modulating the magnitude of the anion effect. In 70 mol % DMSO, a collapsed to swollen thermotransition was noted for PNIPAM. Here, concentration-dependent specific ion effects were observed; a forward series was observed in 0.2 mol % electrolytes, whereas increasing the electrolyte concentration to 0.9 mol % led to a series reversal. While no thermotransition was observed in pure DMSO, a solvent-induced specific ion series reversal was noted; SCN- destabilized the brush and Cl- stabilized the brush. Both series reversals are attributed to the delicate balance of interactions between the solvent, solute (ion), and substrate (brush). Namely, the stability of the solvent clusters was hypothesized to drive polymer solvation.
Collapse
Affiliation(s)
- Hayden Robertson
- College
of Science, Engineering and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Isaac J. Gresham
- School
of Chemistry, University of Sydney, Sydney 2052, Australia
| | - Andrew R. J. Nelson
- Australian
Centre for Neutron Scattering, ANSTO, Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Kasimir P. Gregory
- Division
of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital
Territory 0200, Australia
| | - Edwin C. Johnson
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | - Joshua D. Willott
- College
of Science, Engineering and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Stuart W. Prescott
- School of
Chemical Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Grant B. Webber
- College
of Science, Engineering and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Erica J. Wanless
- College
of Science, Engineering and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
7
|
Gresham IJ, Lilley SG, Nelson ARJ, Koynov K, Neto C. Nanostructure Explains the Behavior of Slippery Covalently Attached Liquid Surfaces. Angew Chem Int Ed Engl 2023; 62:e202308008. [PMID: 37550243 DOI: 10.1002/anie.202308008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Slippery covalently-attached liquid surfaces (SCALS) with low contact angle hysteresis (CAH, <5°) and nanoscale thickness display impressive anti-adhesive properties, similar to lubricant-infused surfaces. Their efficacy is generally attributed to the liquid-like mobility of the constituent tethered chains. However, the precise physico-chemical properties that facilitate this mobility are unknown, hindering rational design. This work quantifies the chain length, grafting density, and microviscosity of a range of polydimethylsiloxane (PDMS) SCALS, elucidating the nanostructure responsible for their properties. Three prominent methods are used to produce SCALS, with characterization carried out via single-molecule force measurements, neutron reflectometry, and fluorescence correlation spectroscopy. CO2 snow-jet cleaning was also shown to reduce the CAH of SCALS via a modification of their grafting density. SCALS behavior can be predicted by reduced grafting density, Σ, with the lowest water CAH achieved at Σ≈2. This study provides the first direct examination of SCALS grafting density, chain length, and microviscosity and supports the hypothesis that SCALS properties stem from a balance of layer uniformity and mobility.
Collapse
Affiliation(s)
- Isaac J Gresham
- School of Chemistry and the University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| | - Seamus G Lilley
- School of Chemistry and the University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| | - Andrew R J Nelson
- Australian Center for Neutron Scattering, ANSTO, Sydney, NSW, Australia
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Chiara Neto
- School of Chemistry and the University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Robertson H, Willott JD, Gregory KP, Johnson EC, Gresham IJ, Nelson ARJ, Craig VSJ, Prescott SW, Chapman R, Webber GB, Wanless EJ. From Hofmeister to hydrotrope: Effect of anion hydrocarbon chain length on a polymer brush. J Colloid Interface Sci 2023; 634:983-994. [PMID: 36571860 DOI: 10.1016/j.jcis.2022.12.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
HYPOTHESIS Specific ion effects govern myriad biological phenomena, including protein-ligand interactions and enzyme activity. Despite recent advances, detailed understanding of the role of ion hydrophobicity in specific ion effects, and the intersection with hydrotropic effects, remains elusive. Short chain fatty acid sodium salts are simple amphiphiles which play an integral role in our gastrointestinal health. We hypothesise that increasing a fatty acid's hydrophobicity will manifest stronger salting-out behaviour. EXPERIMENTS Here we study the effect of these amphiphiles on an exemplar thermoresponsive polymer brush system, conserving the carboxylate anion identity while varying anion hydrophobicity via the carbon chain length. Ellipsometry and quartz crystal microbalance with dissipation monitoring were used to characterise the thermoresponse and viscoelasticity of the brush, respectively, whilst neutron reflectometry was used to reveal the internal structure of the brush. Diffusion-ordered nuclear magnetic resonance spectroscopy and computational investigations provide insight into polymer-ion interactions. FINDINGS Surface sensitive techniques unveiled a non-monotonic trend in salting-out ability with increasing anion hydrophobicity, revealing the bundle-like morphology of the ion-collapsed system. An intersection between ion-specific and hydrotropic effects was observed both experimentally and computationally; trending from good anti-hydrotrope towards hydrotropic behaviour with increasing anion hydrophobicity, accompanying a change in hydrophobic hydration.
Collapse
Affiliation(s)
- Hayden Robertson
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Joshua D Willott
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Kasimir P Gregory
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 0200, Australia
| | - Edwin C Johnson
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; Department of Chemistry, The University of Sheffield, Sheffield, UK
| | - Isaac J Gresham
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew R J Nelson
- Australian Centre for Neutron Scattering, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Vincent S J Craig
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 0200, Australia
| | - Stuart W Prescott
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Robert Chapman
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Grant B Webber
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Erica J Wanless
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
9
|
Brotherton EE, Johnson EC, Smallridge MJ, Hammond DB, Leggett GJ, Armes SP. Hydrophilic Aldehyde-Functional Polymer Brushes: Synthesis, Characterization, and Potential Bioapplications. Macromolecules 2023; 56:2070-2080. [PMID: 36938510 PMCID: PMC10018759 DOI: 10.1021/acs.macromol.2c02471] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) is used to polymerize a cis-diol-functional methacrylic monomer (herein denoted GEO5MA) from planar silicon wafers. Ellipsometry studies indicated dry brush thicknesses ranging from 40 to 120 nm. The hydrophilic PGEO5MA brush is then selectively oxidized using sodium periodate to produce an aldehyde-functional hydrophilic PAGEO5MA brush. This post-polymerization modification strategy provides access to significantly thicker brushes compared to those obtained by surface-initiated ARGET ATRP of the corresponding aldehyde-functional methacrylic monomer (AGEO5MA). The much slower brush growth achieved in the latter case is attributed to the relatively low aqueous solubility of the AGEO5MA monomer. X-ray photoelectron spectroscopy (XPS) analysis confirmed that precursor PGEO5MA brushes were essentially fully oxidized to the corresponding PAGEO5MA brushes within 30 min of exposure to a dilute aqueous solution of sodium periodate at 22 °C. PAGEO5MA brushes were then functionalized via Schiff base chemistry using an amino acid (histidine), followed by reductive amination with sodium cyanoborohydride. Subsequent XPS analysis indicated that the mean degree of histidine functionalization achieved under optimized conditions was approximately 81%. Moreover, an XPS depth profiling experiment confirmed that the histidine groups were uniformly distributed throughout the brush layer. Surface ζ potential measurements indicated a significant change in the electrophoretic behavior of the zwitterionic histidine-functionalized brush relative to that of the non-ionic PGEO5MA precursor brush. The former brush exhibited cationic character at low pH and anionic character at high pH, with an isoelectric point being observed at around pH 7. Finally, quartz crystal microbalance studies indicated minimal adsorption of a model globular protein (BSA) on a PGEO5MA brush-coated substrate, whereas strong protein adsorption via Schiff base chemistry occurred on a PAGEO5MA brush-coated substrate.
Collapse
Affiliation(s)
- Emma E. Brotherton
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Edwin C. Johnson
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | | | - Deborah B. Hammond
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Graham J. Leggett
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| |
Collapse
|
10
|
Hofmeister series: An insight into its application on gelatin and alginate-based dual-drug biomaterial design. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
He Q, Qiao Y, Medina Jimenez C, Hackler R, Martinson ABF, Chen W, Tirrell MV. Ion Specificity Influences on the Structure of Zwitterionic Brushes. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Affiliation(s)
- Qiming He
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, Illinois 60637, United States
| | - Yijun Qiao
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Carlos Medina Jimenez
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, Illinois 60637, United States
| | - Ryan Hackler
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Alex B. F. Martinson
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Wei Chen
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, Illinois 60637, United States
| | - Matthew V. Tirrell
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, Illinois 60637, United States
| |
Collapse
|
12
|
Micciulla S, Gutfreund P, Kanduč M, Chiappisi L. Pressure-Induced Phase Transitions of Nonionic Polymer Brushes. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Samantha Micciulla
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042Grenoble, France
| | - Philipp Gutfreund
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042Grenoble, France
| | - Matej Kanduč
- Jožef Stefan Institute, Jamova 39, SI-1000Ljubljana, Slovenia
| | - Leonardo Chiappisi
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042Grenoble, France
| |
Collapse
|
13
|
Robertson H, Nelson ARJ, Prescott SW, Webber GB, Wanless EJ. Cosolvent effects on the structure and thermoresponse of a polymer brush: PNIPAM in DMSO–water mixtures. Polym Chem 2023. [DOI: 10.1039/d2py01487d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Structural characterisation of thermoresponsive polymer brushes in binary DMSO–water mixtures reveals both LCST and UCST behaviour.
Collapse
Affiliation(s)
- Hayden Robertson
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, Australia
| | | | | | - Grant B. Webber
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, Australia
| | - Erica J. Wanless
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, Australia
| |
Collapse
|
14
|
Lin M, Raghuwanshi VS, Browne C, Simon GP, Garnier G. Tailoring the humidity response of cellulose nanocrystal-based films by specific ion effects. J Colloid Interface Sci 2023; 629:694-704. [PMID: 36183648 DOI: 10.1016/j.jcis.2022.09.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022]
Abstract
HYPOTHESIS The optical properties and humidity response of iridescent films made of cellulose nanocrystal (CNC) and polyethylene glycol (PEG) can be tailored by the incorporation of electrolytes chosen based on specific ion effects (SIE). EXPERIMENTS A series of inorganic salts comprising five different cations and five anions based on the Hofmeister series were mixed with CNC/PEG suspensions, followed by an air-dried process into iridescent solid films. These films were tested in changing relative humidity (RH) environments from 30% to 90% and their photonic properties and mass change monitored. The underlying structures and the mechanism of their formation were quantified in terms of interparticle distance derived from small angle X-ray scattering experiment and pitch size quantified by scanning electron microscope (SEM). FINDINGS The specific color and color range of CNC/PEG based films are controlled by a specific anion effect achieved by selection of the salt while the specific cation effect is negligible. The salting-in type anions with the same valency result in a red-shift color when films are in the dried state. The salting-in type leads to a greater color changing range during RH changes than the salting-out type. The resultant mass gain/loss trend is consistent with the color change. In contrast, cations do not show any relationships between salting-in effect and the measured properties as observed for anions. The observed SIE can be used to engineer CNC/polymer-based humidity and bio-diagnostic colorimetric indicator devices.
Collapse
Affiliation(s)
- Maoqi Lin
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Vikram Singh Raghuwanshi
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Christine Browne
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - George P Simon
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Gil Garnier
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
15
|
Wei T, Ran T, Zhao W, Dai B. A Flocculation–Adsorption Self-Coupled System for Wastewater Treatment with the Aim of Water Reuse. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Tingting Wei
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi832003, China
| | - Tingmin Ran
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi832003, China
| | - Wei Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi832003, China
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi832003, China
| |
Collapse
|
16
|
Nagy B, Ekblad T, Fragneto G, Ederth T. Structure of Self-Initiated Photopolymerized Films: A Comparison of Models. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14004-14015. [PMID: 36377414 PMCID: PMC9671054 DOI: 10.1021/acs.langmuir.2c02396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Self-initiated photografting and photopolymerization (SI-PGP) uses UV illumination to graft polymers to surfaces without additional photoinitiators using the monomers as initiators, "inimers". A wider use of this method is obstructed by a lack of understanding of the resulting, presumably heterogeneous, polymer structure and of the parallel degradation under continuous UV illumination. We have used neutron reflectometry to investigate the structure of hydrated SI-PGP-prepared poly(HEMA-co-PEG10MA) (poly(2-hydroxyethyl methacrylate-co-(ethylene glycol)10 methacrylate)) films and compared parabolic, sigmoidal, and Gaussian models for the polymer volume fraction distributions. Results from fitting these models to the data suggest that either model can be used to approximate the volume fraction profile to similar accuracy. In addition, a second layer of deuterated poly(methacrylic acid) (poly(dMAA)) was grafted over the existing poly(HEMA-co-PEG10MA) layer, and the resulting double-grafted films were also studied by neutron reflectometry to shed light on the UV-polymerization process and the inevitable UV-induced degradation which competes with the grafting.
Collapse
Affiliation(s)
- Béla Nagy
- Division
of Biophysics and Bioengineering, Department of Physics, Chemistry
and Biology, Linköping University, SE-581 83Linköping, Sweden
| | - Tobias Ekblad
- Division
of Biophysics and Bioengineering, Department of Physics, Chemistry
and Biology, Linköping University, SE-581 83Linköping, Sweden
| | - Giovanna Fragneto
- Institut
Laue-Langevin, 71 avenue des Martyrs, BP 156, 38042Grenoble, France
| | - Thomas Ederth
- Division
of Biophysics and Bioengineering, Department of Physics, Chemistry
and Biology, Linköping University, SE-581 83Linköping, Sweden
| |
Collapse
|
17
|
Gresham IJ, Willott JD, Johnson EC, Li P, Webber GB, Wanless EJ, Nelson AR, Prescott SW. Effect of surfactants on the thermoresponse of PNIPAM investigated in the brush geometry. J Colloid Interface Sci 2022; 631:260-271. [DOI: 10.1016/j.jcis.2022.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
18
|
Thermoresponsive Polymer Assemblies: From Molecular Design to Theranostics Application. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Gregory KP, Elliott GR, Robertson H, Kumar A, Wanless EJ, Webber GB, Craig VSJ, Andersson GG, Page AJ. Understanding specific ion effects and the Hofmeister series. Phys Chem Chem Phys 2022; 24:12682-12718. [PMID: 35543205 DOI: 10.1039/d2cp00847e] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Specific ion effects (SIE), encompassing the Hofmeister Series, have been known for more than 130 years since Hofmeister and Lewith's foundational work. SIEs are ubiquitous and are observed across the medical, biological, chemical and industrial sciences. Nevertheless, no general predictive theory has yet been able to explain ion specificity across these fields; it remains impossible to predict when, how, and to what magnitude, a SIE will be observed. In part, this is due to the complexity of real systems in which ions, counterions, solvents and cosolutes all play varying roles, which give rise to anomalies and reversals in anticipated SIEs. Herein we review the historical explanations for SIE in water and the key ion properties that have been attributed to them. Systems where the Hofmeister series is perturbed or reversed are explored, as is the behaviour of ions at the liquid-vapour interface. We discuss SIEs in mixed electrolytes, nonaqueous solvents, and in highly concentrated electrolyte solutions - exciting frontiers in this field with particular relevance to biological and electrochemical applications. We conclude the perspective by summarising the challenges and opportunities facing this SIE research that highlight potential pathways towards a general predictive theory of SIE.
Collapse
Affiliation(s)
- Kasimir P Gregory
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia. .,Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 0200, Australia
| | - Gareth R Elliott
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| | - Hayden Robertson
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| | - Anand Kumar
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5001, Australia
| | - Erica J Wanless
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| | - Grant B Webber
- School of Engineering, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Vincent S J Craig
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 0200, Australia
| | - Gunther G Andersson
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5001, Australia
| | - Alister J Page
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| |
Collapse
|
20
|
Gresham IJ, Murdoch TJ, Johnson EC, Robertson H, Webber GB, Wanless EJ, Prescott SW, Nelson ARJ. Quantifying the robustness of the neutron reflectometry technique for structural characterization of polymer brushes. J Appl Crystallogr 2021. [DOI: 10.1107/s160057672100251x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Neutron reflectometry is the foremost technique for in situ determination of the volume fraction profiles of polymer brushes at planar interfaces. However, the subtle features in the reflectometry data produced by these diffuse interfaces challenge data interpretation. Historically, data analyses have used least-squares approaches that do not adequately quantify the uncertainty of the modeled profile and ignore the possibility of other structures that also match the collected data (multimodality). Here, a Bayesian statistical approach is used that permits the structural uncertainty and multimodality to be quantified for polymer brush systems. A free-form model is used to describe the volume fraction profile, minimizing assumptions regarding brush structure, while only allowing physically reasonable profiles to be produced. The model allows the total volume of polymer and the profile monotonicity to be constrained. The rigor of the approach is demonstrated via a round-trip analysis of a simulated system, before it is applied to real data examining the well characterized collapse of a thermoresponsive brush. It is shown that, while failure to constrain the interfacial volume and consider multimodality may result in erroneous structures being derived, carefully constraining the model allows for robust determination of polymer brush compositional profiles. This work highlights that an appropriate combination of flexibility and constraint must be used with polymer brush systems to ensure the veracity of the analysis. The code used in this analysis is provided, enabling the reproduction of the results and the application of the method to similar problems.
Collapse
|
21
|
Gresham IJ, Humphreys BA, Willott JD, Johnson EC, Murdoch TJ, Webber GB, Wanless EJ, Nelson ARJ, Prescott SW. Geometrical Confinement Modulates the Thermoresponse of a Poly( N-isopropylacrylamide) Brush. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Isaac J. Gresham
- School of Chemical Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Ben A. Humphreys
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan 2308, Australia
| | - Joshua D. Willott
- Membrane Science and Technology, Mesa+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Edwin C. Johnson
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan 2308, Australia
| | - Timothy J. Murdoch
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan 2308, Australia
| | - Grant B. Webber
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan 2308, Australia
| | - Erica J. Wanless
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan 2308, Australia
| | | | - Stuart W. Prescott
- School of Chemical Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| |
Collapse
|
22
|
Johnson EC, Gresham IJ, Prescott SW, Nelson A, Wanless EJ, Webber GB. The direction of influence of specific ion effects on a pH and temperature responsive copolymer brush is dependent on polymer charge. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Affiliation(s)
- M. Manav
- Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California 91125, United States
| | - M. Ponga
- Mechanical Engineering, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - A. Srikantha Phani
- Mechanical Engineering, University of British Columbia, Vancouver V6T 1Z4, Canada
| |
Collapse
|
24
|
Johnson EC, Willott JD, Gresham IJ, Murdoch TJ, Humphreys BA, Prescott SW, Nelson A, de Vos WM, Webber GB, Wanless EJ. Enrichment of Charged Monomers Explains Non-monotonic Polymer Volume Fraction Profiles of Multi-stimulus Responsive Copolymer Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12460-12472. [PMID: 33105998 DOI: 10.1021/acs.langmuir.0c01502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multi-stimulus responsive poly(2-(2-methoxyethoxy)ethyl methacrylate-co-2-(diethylamino)ethyl methacrylate) [P(MEO2MA-co-DEA)] 80:20 mol % copolymer brushes were synthesized on planar silica substrates via surface-initiated activators continuously regenerated via electron transfer atom transfer radical polymerization. Brush thickness was sensitive to changes in pH and temperature as monitored with ellipsometry. At low pH, the brush is charged and swollen, while at high pH, the brush is uncharged and more collapsed. Clear thermoresponsive behavior is also observed with the brush more swollen at low temperatures compared to high temperatures at both high and low pH. Neutron reflectometry was used to determine the polymer volume fraction profiles (VFPs) at various pH values and temperatures. A region of lower polymer content, or a depletion region, near the substrate is present in all of the experimental polymer VFPs, and it is more pronounced at low pH (high charge) and less so at high pH (low charge). Polymer VFPs calculated through numerical self-consistent field theory suggest that enrichment of DEA monomers near the substrate results in the experimentally observed non-monotonic VFPs. Adsorption of DEA monomers to the substrate prior to initiation of polymerization could give rise to DEA segment-enriched region proximal to the substrate.
Collapse
Affiliation(s)
- Edwin C Johnson
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Joshua D Willott
- Membrane Surface Science (MSuS), Membrane Science and Technology cluster, Mesa+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Isaac J Gresham
- School of Chemical Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Timothy J Murdoch
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Ben A Humphreys
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Stuart W Prescott
- School of Chemical Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Andrew Nelson
- ANSTO, Locked bag 2001, Kirrawee DC, Sydney, New South Wales 2232, Australia
| | - Wiebe M de Vos
- Membrane Surface Science (MSuS), Membrane Science and Technology cluster, Mesa+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Grant B Webber
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Erica J Wanless
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
25
|
Competitive specific ion effects in mixed salt solutions on a thermoresponsive polymer brush. J Colloid Interface Sci 2020; 586:292-304. [PMID: 33189318 DOI: 10.1016/j.jcis.2020.10.092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/22/2022]
Abstract
HYPOTHESIS Grafted poly(ethylene glycol) methyl ether methacrylate (POEGMA) copolymer brushes change conformation in response to temperature ('thermoresponse'). In the presence of different ions the thermoresponse of these coatings is dramatically altered. These effects are complex and poorly understood with no all-inclusive predictive theory of specific ion effects. As natural environments are composed of mixed electrolytes, it is imperative we understand the interplay of different ions for future applications. We hypothesise anion mixtures from the same end of the Hofmeister series (same-type anions) will exhibit non-additive and competitive behaviour. EXPERIMENTS The behaviour of POEGMA brushes, synthesised via surface-initiated ARGET-ATRP, in both single and mixed aqueous electrolyte solutions was characterised with ellipsometry and neutron reflectometry as a function of temperature. FINDINGS In mixed fluoride and chloride aqueous electrolytes (salting-out ions), or mixed thiocyanate and iodide aqueous electrolytes (salting-in ions), a non-monotonic concentration-dependent influence of the two anions on the thermoresponse of the brush was observed. A new term, δ, has been defined to quantitively describe synergistic or antagonistic behaviour. This study determined the specific ion effects imparted by salting-out ions are dependent on available solvent molecules, whereas the influence of salting-in ions is dependent on the interactions of the anions and polymer chains.
Collapse
|
26
|
Higaki Y, Kobayashi M, Takahara A. Hydration State Variation of Polyzwitterion Brushes through Interplay with Ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9015-9024. [PMID: 32677837 DOI: 10.1021/acs.langmuir.0c01672] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Polyzwitterions have emerged as a new class of antifouling materials alternating poly(ethylene glycol). The exemplary biopassivation and lubrication behaviors are often attributed to the particular chemical structure of zwitterions, which involve a large dipole moment of the charged groups and a neutral net charge, while the hydration state and dynamics also associate with these characteristics. Polymer brushes composed of surface-tethered polyzwitterion chains produced by surface-initiated controlled radical polymerization have been developed as thin films which exhibit excellent antifouling and lubrication properties. In past decades, numerous studies have been devoted to examining the structure and dynamics of polyzwitterion brush chains in aqueous solutions. This feature article provides an overview of recent studies exploring the hydration state of polyzwitterion brushes with specular neutron reflectivity, highlights some newly published work on the nonuniform equilibrium structure, ion concentration dependence, ion specificity, and the effects of charge spacer length in the zwitterions, and discusses future perspective in this field.
Collapse
Affiliation(s)
- Yuji Higaki
- Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Motoyasu Kobayashi
- School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | | |
Collapse
|
27
|
Moghaddam SZ, Thormann E. Surface forces and friction tuned by thermo-responsive polymer films. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
van Duinen D, Butt HJ, Berger R. Two-Stage Collapse of PNIPAM Brushes: Viscoelastic Changes Revealed by an Interferometric Laser Technique. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15776-15783. [PMID: 31633361 PMCID: PMC6943814 DOI: 10.1021/acs.langmuir.9b03205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Many temperature-responsive polymers exhibit a single-phase transition at the lower critical solution temperature (LCST). One exception is poly(N-isopropylacryamide) (PNIPAM). PNIPAM brush layers (51 ± 3 nm thick) that are end-grafted onto glass beads collapse in two stages. The viscoelastic changes of a PNIPAM brush layers were investigated with an interferometric laser method at different temperatures. This method is able to measure the two-stage collapse of beads coated with a polymer brush layer. When these beads are situated close to a hydrophilic glass surface, they exhibit Brownian motion. As this Brownian motion changes with temperature, the collapse of the polymer layer is revealed. The characteristic spectrum of the Brownian motion of beads is modeled by a damped harmonic oscillator, where the polymer layer acts as both spring and damping elements. The change of the Brownian motion spectrum with temperature indicates two transitions of the PNIPAM brush layer, one at 36 °C and one at 46 °C. We attribute the first transition to the LCST volume collapse of PNIPAM. Here, changes of the density and viscosity of the brush dominate. The second transition is dominated by a stiffening of the brush layer.
Collapse
|
29
|
Hofmeister Effect on Thermo-responsive Poly(N-isopropylacrylamide) Hydrogels Grafted on Macroporous Poly(vinyl alcohol) Formaldehyde Sponges. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2320-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Humphreys BA, Johnson EC, Wanless EJ, Webber GB. Poly( N-isopropylacrylamide) Response to Salt Concentration and Anion Identity: A Brush-on-Brush Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10818-10830. [PMID: 31339320 DOI: 10.1021/acs.langmuir.9b00695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The stability of poly(N-isopropylacrylamide) (PNIPAM) brush-modified colloidal silica particles was compared to asymmetric and symmetric PNIPAM brush direct force measurements in the presence of 1, 10, and 500 mM aqueous salt solution of KCl, KNO3, and KSCN between 10 and 45 °C. Dynamic light scattering measurements highlighted subtle variations in the salt-mediated thermoresponse, while atomic force microscopy (AFM) force curves between a bare silica or PNIPAM brush-modified colloid probe and a planar PNIPAM brush elucidated differences in brush interactions. The AFM force curves in the presence of KCl primarily revealed steric interactions between the surfaces, while KNO3 and KSCN solutions exhibited electrosteric interactions on approach as a function of the chaotropic nature of the ion and the solution concentration. The symmetric PNIPAM brush interaction highlighted significant variations between KCl and KSCN at 1 and 500 mM concentrations, while the approach and retraction force curves were relatively similar at 10 mM concentration. The combination of these techniques enabled the stability of PNIPAM brush-modified colloidal dispersions in the presence of electrolyte to be better understood with specific ion binding and the solution Debye length playing a significant role.
Collapse
Affiliation(s)
- Ben A Humphreys
- Priority Research Centre for Advanced Particle Processing and Transport , University of Newcastle , Callaghan , NSW 2308 , Australia
| | - Edwin C Johnson
- Priority Research Centre for Advanced Particle Processing and Transport , University of Newcastle , Callaghan , NSW 2308 , Australia
| | - Erica J Wanless
- Priority Research Centre for Advanced Particle Processing and Transport , University of Newcastle , Callaghan , NSW 2308 , Australia
| | - Grant B Webber
- Priority Research Centre for Advanced Particle Processing and Transport , University of Newcastle , Callaghan , NSW 2308 , Australia
| |
Collapse
|
31
|
The Hofmeister series: Specific ion effects in aqueous polymer solutions. J Colloid Interface Sci 2019; 555:615-635. [PMID: 31408761 DOI: 10.1016/j.jcis.2019.07.067] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022]
Abstract
Specific ion effects in aqueous polymer solutions have been under active investigation over the past few decades. The current state-of-the-art research is primarily focused on the understanding of the mechanisms through which ions interact with macromolecules and affect their solution stability. Hence, we herein first present the current opinion on the sources of ion-specific effects and review the relevant studies. This includes a summary of the molecular mechanisms through which ions can interact with polymers, quantification of the affinity of ions for the polymer surface, a thermodynamic description of the effects of salts on polymer stability, as well as a discussion on the different forces that contribute to ion-polymer interplay. Finally, we also highlight future research issues that call for further scrutiny. These include fundamental questions on the mechanisms of ion-specific effects and their correlation with polymer properties as well as a discussion on the specific ion effects in more complex systems such as mixed electrolyte solutions.
Collapse
|
32
|
Marschelke C, Puretskiy N, Raguzin I, Melnyk I, Ionov L, Synytska A. Effect of Architecture of Thermoresponsive Copolymer Brushes on Switching of Their Adsorption Properties. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Claudia Marschelke
- Leibniz Institute of Polymer Research Dresden e.V. Hohe Str. 6 01069 Dresden Germany
- Institute of Physical Chemistry of Polymeric Materials Dresden University of Technology 01062 Dresden Germany
| | - Nikolay Puretskiy
- Leibniz Institute of Polymer Research Dresden e.V. Hohe Str. 6 01069 Dresden Germany
| | - Ivan Raguzin
- Leibniz Institute of Polymer Research Dresden e.V. Hohe Str. 6 01069 Dresden Germany
| | - Inga Melnyk
- Leibniz Institute of Polymer Research Dresden e.V. Hohe Str. 6 01069 Dresden Germany
| | - Leonid Ionov
- Faculty of Engineering ScienceUniversity of Bayreuth, Universitätsstr. 30 95440 Bayreuth Germany
- Bavarian Polymer Institute, Universitätsstr. 30 95440 Bayreuth Germany
| | - Alla Synytska
- Leibniz Institute of Polymer Research Dresden e.V. Hohe Str. 6 01069 Dresden Germany
- Institute of Physical Chemistry of Polymeric Materials Dresden University of Technology 01062 Dresden Germany
| |
Collapse
|
33
|
Sakamaki T, Inutsuka Y, Igata K, Higaki K, Yamada NL, Higaki Y, Takahara A. Ion-Specific Hydration States of Zwitterionic Poly(sulfobetaine methacrylate) Brushes in Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1583-1589. [PMID: 30441903 DOI: 10.1021/acs.langmuir.8b03104] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The ion-specific hydration states of zwitterionic poly(3-( N-2-methacryloyloxyethyl- N, N-dimethyl)ammonatopropanesulfonate) (PMAPS) brushes in various aqueous solutions were investigated by neutron reflectivity (NR) and atomic force microscopy (AFM). The asymmetric hydration state of the PMAPS brushes was verified from the NR scattering-length density profiles, while the variation in their swollen thickness was complementary as determined from AFM topographic images. PMAPS brushes got thicker in any salt solutions, while the extent of swelling and the dimensions of swollen chain structure were dependent on the ion species and salt concentration in the solutions. Anion specificity was clearly observed, whereas cations exhibited weaker modulation in ion-specific hydration states. The anion specificity could be ascribed to ion-specific interactions between the quaternary ammonium cation in sulfobetaine and the anions. The weak cation specificity was attributed to the intrinsically weak cohesive interactions between the weakly hydrated sulfonate anion in sulfobetaine and the strongly hydrated cations. The ion-specific hydration of PMAPS brushes was largely consistent with the ion-specific aggregation state of the PMAPS chains in aqueous solutions.
Collapse
Affiliation(s)
| | | | | | | | - Norifumi L Yamada
- Neutron Science Laboratory , High Energy Accelerator Research Organization , Ibaraki 319-1106 , Japan
| | | | | |
Collapse
|
34
|
Johnson EC, Murdoch TJ, Gresham IJ, Humphreys BA, Prescott SW, Nelson A, Webber GB, Wanless EJ. Temperature dependent specific ion effects in mixed salt environments on a thermoresponsive poly(oligoethylene glycol methacrylate) brush. Phys Chem Chem Phys 2019; 21:4650-4662. [DOI: 10.1039/c8cp06644b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The temperature induced swelling/collapse transition of poly(oligoethylene glycol methacrylate) (POEGMA) brushes has been investigated in electrolyte solutions comprised of multiple anions.
Collapse
Affiliation(s)
- Edwin C. Johnson
- Priority Research Centre for Advanced Particle Processing and Transport
- University of Newcastle
- Callaghan
- Australia
| | - Timothy J. Murdoch
- Priority Research Centre for Advanced Particle Processing and Transport
- University of Newcastle
- Callaghan
- Australia
| | | | - Ben A. Humphreys
- Priority Research Centre for Advanced Particle Processing and Transport
- University of Newcastle
- Callaghan
- Australia
| | | | | | - Grant B. Webber
- Priority Research Centre for Advanced Particle Processing and Transport
- University of Newcastle
- Callaghan
- Australia
| | - Erica J. Wanless
- Priority Research Centre for Advanced Particle Processing and Transport
- University of Newcastle
- Callaghan
- Australia
| |
Collapse
|
35
|
Humphreys BA, Prescott SW, Murdoch TJ, Nelson A, Gilbert EP, Webber GB, Wanless EJ. Influence of molecular weight on PNIPAM brush modified colloidal silica particles. SOFT MATTER 2018; 15:55-64. [PMID: 30534695 DOI: 10.1039/c8sm01824c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The effect of molecular weight and temperature on the phase transition and internal structure of poly(N-isopropylacrylamide) brush modified colloidal silica particles was investigated using dynamic light scattering (DLS) and small angle neutron scattering (SANS) between 15 and 45 °C. Dry particle analysis utilising transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) all confirmed the thickness of the polymer brush shell increased as a function of polymerisation time. Hydrodynamic diameter and electrophoretic mobility results revealed that the brush modified particles transitioned from swollen shells to a collapsed conformation between 15 and 35 °C. The dispersions were electrosterically stabilised over the entire temperature range investigated, with minimal thermal hysteresis recorded. Modelling of the hydrodynamic diameter enabled the calculation of a lower critical solution temperature (LCST) which increased as a function of brush thickness. The internal structure determined via SANS showed a swollen brush at low temperatures (18 and 25 °C) which decayed radially away from the substrate, while a collapsed block-like conformation with 60% polymer volume fraction was present at 40 °C. Radial phase separation was evident at intermediate temperatures (30 and 32.5 °C) with the lower molecular weight sample having a greater volume fraction of polymer in the dense inner region at these temperatures.
Collapse
Affiliation(s)
- Ben A Humphreys
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, NSW 2308, Australia.
| | | | - Timothy J Murdoch
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Andrew Nelson
- Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, NSW 2234, Australia
| | - Elliot P Gilbert
- Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, NSW 2234, Australia
| | - Grant B Webber
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Erica J Wanless
- Priority Research Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
36
|
Murdoch TJ, Humphreys BA, Johnson EC, Webber GB, Wanless EJ. Specific ion effects on thermoresponsive polymer brushes: Comparison to other architectures. J Colloid Interface Sci 2018; 526:429-450. [DOI: 10.1016/j.jcis.2018.04.086] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023]
|
37
|
Higaki Y, Inutsuka Y, Ono H, Yamada NL, Ikemoto Y, Takahara A. Counteranion-Specific Hydration States of Cationic Polyelectrolyte Brushes. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00210] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yuji Higaki
- Japan Science
and Technology Agency (JST), ERATO, Takahara Soft Interfaces Project, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | | | | | - Norifumi L. Yamada
- Neutron Science Laboratory, High Energy Accelerator Research Organization, Ibaraki 319-1106, Japan
| | - Yuka Ikemoto
- Japan Synchrotron Radiation
Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho,
Sayo-gun, Hyogo 679-5198, Japan
| | - Atsushi Takahara
- Japan Science
and Technology Agency (JST), ERATO, Takahara Soft Interfaces Project, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
38
|
Koenig M, Rodenhausen KB, Rauch S, Bittrich E, Eichhorn KJ, Schubert M, Stamm M, Uhlmann P. Salt Sensitivity of the Thermoresponsive Behavior of PNIPAAm Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2448-2454. [PMID: 29356537 DOI: 10.1021/acs.langmuir.7b03919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report investigations on the salt sensitivity of the thermoresponsive behavior of PNIPAAm brushes applying the quartz crystal microbalance coupled with spectroscopic ellipsometry technique. This approach enables a detailed study of the optical and mechanical behavior of the polymer coatings. Additional conclusions can be drawn from the difference between both techniques due to a difference in the contrast mechanism of both methods. A linear shift of the phase-transition temperature to lower temperatures with the addition of sodium chloride was found, similar to the behavior of free polymer chains in solution. The thermal hysteresis was found to be decreased by the addition of sodium chloride to the solution, hinting to the interaction of the ions with the amide groups of the polymer, whereby the formation of hydrogen bonds is hindered. The results of this study are of relevance to the application of PNIPAAm brushes in biological fluids and demonstrate the additional potential of the ion sensitivity besides the better known thermosensitivity.
Collapse
Affiliation(s)
- Meike Koenig
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Straße 6, 01069 Dresden, Germany
| | - Keith Brian Rodenhausen
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln , 207 Othmer Hall, Lincoln, Nebraska 68588, United States
| | - Sebastian Rauch
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Straße 6, 01069 Dresden, Germany
| | - Eva Bittrich
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Straße 6, 01069 Dresden, Germany
| | - Klaus-Jochen Eichhorn
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Straße 6, 01069 Dresden, Germany
| | - Mathias Schubert
- Department of Electrical and Computer Engineering and Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln , 209N Scott Engineering Center, Lincoln, Nebraska 68588, United States
- Department of Physics, Chemistry, and Biology, IFM, Linköping University , SE-581 83 Linköping, Sweden
| | - Manfred Stamm
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Straße 6, 01069 Dresden, Germany
- Faculty of Science, Department of Chemistry, Chair of Physical Chemistry of Polymeric Materials, Technische Universität Dresden , Bergstraße 66, 01069 Dresden, Germany
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Straße 6, 01069 Dresden, Germany
- Department of Chemistry, University of Nebraska-Lincoln , Hamilton Hall, 639 North 12th Street, Lincoln, Nebraska 68588, United States
| |
Collapse
|
39
|
The role of copolymer composition on the specific ion and thermo-response of ethylene glycol-based brushes. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.01.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Effect of ionic strength and salt identity on poly(N-isopropylacrylamide) brush modified colloidal silica particles. J Colloid Interface Sci 2018; 516:153-161. [PMID: 29367066 DOI: 10.1016/j.jcis.2018.01.058] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 11/23/2022]
Abstract
HYPOTHESIS The thermoresponse of poly(N-isopropylacrylamide) stabilised particles is influenced by the presence of salt and is dependent on the concentration, and ions present. The conformation and electrophoretic mobility of core/shell PNIPAM brush modified silica particles is expected to vary as a function of these specific ion effects. EXPERIMENTS The thermoresponse of PNIPAM brush modified silica particles was investigated via dynamic light scattering and electrophoretic mobility measurements between 5 and 45 °C in the presence of 11 different salt solutions. FINDINGS Specific ion effects were observed in the presence of salt solutions for concentrations between 50 and 1000 mM. The temperature response could be mapped to a master curve unlike PNIPAM brush behaviour on planar substrates. The magnitude of brush layer lower critical solution temperature reduction was found to follow the order F- > CH3CO2- > Cl- > NO3- ∼ Br- > I- > SCN- for the potassium series and Na+ > K+ > Cs+ > Li+ ∼ NH4+ for the chloride salts. The electrophoretic mobility of the modified particles in the presence of 100 mM potassium salts increased in magnitude as the brush layer collapsed and also with the chaotropic nature of the anion.
Collapse
|
41
|
Wang D, Russell TP. Advances in Atomic Force Microscopy for Probing Polymer Structure and Properties. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01459] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Thomas P. Russell
- Polymer
Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
42
|
Christau S, Moeller T, Genzer J, Koehler R, von Klitzing R. Salt-Induced Aggregation of Negatively Charged Gold Nanoparticles Confined in a Polymer Brush Matrix. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00866] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Stephanie Christau
- Stranski
Laboratory for Physical Chemistry, Technische Universitaet Berlin, Str. des 17. Juni 124, 10623 Berlin, Germany
- Department of Chemical & Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695-7905, United States
| | - Tim Moeller
- Stranski
Laboratory for Physical Chemistry, Technische Universitaet Berlin, Str. des 17. Juni 124, 10623 Berlin, Germany
| | - Jan Genzer
- Department of Chemical & Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695-7905, United States
| | - Ralf Koehler
- Institute
of Soft Matter and Functional Materials (F-ISFM), Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Landesamt fuer
Arbeitsschutz, Verbraucherschutz und Gesundheit, Muellroser Chaussee 50, 15236 Frankfurt (Oder), Germany
| | - Regine von Klitzing
- Department
of Physics, Soft Matter at Interfaces, Technische Universitaet Darmstadt, Alarich-Weiss-Strasse 10, 64287 Darmstadt, Germany
- Joint Laboratory
for Structural Research (JLSR) of Helmholtz-Zentrum Berlin fuer Materialien
und Energie (HZB), Institut für Physik, Humboldt-University Berlin, Newtonstr. 15, 12489 Berlin, Germany
| |
Collapse
|
43
|
Higaki Y, Inutsuka Y, Sakamaki T, Terayama Y, Takenaka A, Higaki K, Yamada NL, Moriwaki T, Ikemoto Y, Takahara A. Effect of Charged Group Spacer Length on Hydration State in Zwitterionic Poly(sulfobetaine) Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8404-8412. [PMID: 28737401 DOI: 10.1021/acs.langmuir.7b01935] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Effect of alkyl chain spacer length between the charged groups (CSL) in zwitterionic poly(sulfobetaine) (PSB) brushes on the hydration state was investigated. PSB brushes with ethyl (PMAES), propyl (PMAPS), or butyl (PMABS) CSL were prepared by surface-initiated atom transfer radical polymerization on silicon wafers. Hydration states of the PSB brushes in aqueous solutions and/or humid vapor were investigated by contact angle measurement, infrared spectroscopy, AFM observation, and neutron reflectivity. The PSB brushes are swollen in humid air and deionized water due to the hydration of the charged groups leading to the reduction of hydrated PSB brushes/water interfacial free energy. The hydrated PSB brushes exhibit clear interface with low interfacial roughness due to networking of the PSB brush chains through association of the SBs. The hydrated PSB brushes produce diffusive swollen layer in the presence of NaCl because of the charge screening followed by SB dissociation by the bound ions. The ionic strength sensitivity in the hydration got more significant with increasing the CSL in SBs because of the augmentation in partial charge by charged group separation.
Collapse
Affiliation(s)
- Yuji Higaki
- Institute for Materials Chemistry and Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Graduate School of Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Japan Science and Technology Agency (JST), ERATO, Takahara Soft Interfaces Project, CE80, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshihiro Inutsuka
- Graduate School of Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tatsunori Sakamaki
- Graduate School of Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuki Terayama
- Graduate School of Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ai Takenaka
- Japan Science and Technology Agency (JST), ERATO, Takahara Soft Interfaces Project, CE80, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Keiko Higaki
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Norifumi L Yamada
- Neutron Science Laboratory, High Energy Accelerator Research Organization , Ibaraki 319-1106, Japan
| | - Taro Moriwaki
- Japan Synchrotron Radiation Research Institute/SPring-8 , 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yuka Ikemoto
- Japan Synchrotron Radiation Research Institute/SPring-8 , 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Atsushi Takahara
- Institute for Materials Chemistry and Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Graduate School of Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Japan Science and Technology Agency (JST), ERATO, Takahara Soft Interfaces Project, CE80, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
44
|
Zajforoushan Moghaddam S, Thormann E. Hofmeister Effect on PNIPAM in Bulk and at an Interface: Surface Partitioning of Weakly Hydrated Anions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4806-4815. [PMID: 28448149 DOI: 10.1021/acs.langmuir.7b00953] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The effect of sodium fluoride, sodium trichloroacetate, and sodium thiocyanate on the stability and conformation of poly(N-isopropylacrylamide), in bulk solution and at the gold-aqueous interface, is investigated by differential scanning calorimetry, dynamic light scattering, quartz crystal microbalance, and atomic force microscopy. The results indicate a surface partitioning of the weakly hydrated anions, i.e., thiocyanate and trichloroacetate, and the findings are discussed in terms of anion-induced electrostatic stabilization. Although attractive polymer-ion interactions are suggested for thiocyanate and trichloroacetate, a salting-out effect is found for sodium trichloroacetate. This apparent contradiction is explained by a combination of previously suggested mechanisms for the salting-out effect by weakly hydrated anions.
Collapse
Affiliation(s)
| | - Esben Thormann
- Department of Chemistry, Technical University of Denmark , 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
45
|
Zhang C, Liu Y, Liu Z, Zhang H, Cheng Q, Yang C. Regulation Mechanism of Salt Ions for Superlubricity of Hydrophilic Polymer Cross-Linked Networks on Ti 6Al 4V. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2133-2140. [PMID: 28183180 DOI: 10.1021/acs.langmuir.6b04429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Poly(vinylphosphonic acid) (PVPA) cross-linked networks on Ti6Al4V show superlubricity behavior when sliding against polytetrafluoroethylene in water-based lubricants. The superlubricity can occur but only with the existence of salt ions in the polymer cross-linked networks. This is different from the phenomenon in most polymer brushes. An investigation into the mechanism revealed that cations and anions in the lubricants worked together to yield the superlubricity even under harsh conditions. It is proposed that the preferential interactions of cations with PVPA molecules rather than water molecules are the main reason for the superlubricity in water-based lubricants. The interaction of anions with water molecules regulates the properties of the tribological interfaces, which influences the magnitude of the friction coefficient. Owing to the novel cross-linked networks and the interactions between cations and polymer molecules, their superlubricity can be maintained even at a high salt ion concentration of 5 M. These excellent properties make PVPA-modified Ti6Al4V a potential candidate for application in artificial implants.
Collapse
Affiliation(s)
- Caixia Zhang
- Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology , Beijing 100124, China
| | - Yuhong Liu
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, PR China
| | - Zhifeng Liu
- Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology , Beijing 100124, China
| | - Hongyu Zhang
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, PR China
| | - Qiang Cheng
- Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology , Beijing 100124, China
| | - Congbin Yang
- Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology , Beijing 100124, China
| |
Collapse
|
46
|
Murdoch TJ, Humphreys BA, Willott JD, Prescott SW, Nelson A, Webber GB, Wanless EJ. Enhanced specific ion effects in ethylene glycol-based thermoresponsive polymer brushes. J Colloid Interface Sci 2017; 490:869-878. [DOI: 10.1016/j.jcis.2016.11.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 12/26/2022]
|
47
|
Chen S, Wang K, Zhang W. A new thermoresponsive polymer of poly(N-acryloylsarcosine methyl ester) with a tunable LCST. Polym Chem 2017. [DOI: 10.1039/c7py00274b] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A thermoresponsive polymer of the tertiary amide-based polyacrylamide, PNASME, was synthesized and its tunable thermoresponse was investigated.
Collapse
Affiliation(s)
- Shengli Chen
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Ke Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
48
|
Murdoch TJ, Willott JD, de Vos WM, Nelson A, Prescott SW, Wanless EJ, Webber GB. Influence of Anion Hydrophilicity on the Conformation of a Hydrophobic Weak Polyelectrolyte Brush. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01897] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Timothy J. Murdoch
- Priority Research
Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Joshua D. Willott
- Priority Research
Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Wiebe M. de Vos
- Membrane Science
and Technology, Mesa+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, Netherlands
| | - Andrew Nelson
- Australian
Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Stuart W. Prescott
- School of Chemical Engineering, UNSW Australia, UNSW Sydney, NSW 2052, Australia
| | - Erica J. Wanless
- Priority Research
Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Grant B. Webber
- Priority Research
Centre for Advanced Particle Processing and Transport, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|