1
|
Cutillas-Font G, Pastor A, Alajarin M, Martinez-Cuezva A, Marin-Luna M, Batanero B, Berna J. Mechanical insulation of aza-Pechmann dyes within [2]rotaxanes. Chem Sci 2024; 15:13823-13831. [PMID: 39211492 PMCID: PMC11352530 DOI: 10.1039/d4sc03657c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024] Open
Abstract
Aza-Pechmann derivatives have emerged as interesting building blocks for the preparation of organic electronic devices. The development of methodologies aimed to enhance their chemical stability and modulate their physical and chemical properties constitutes an interesting goal. Here we report the synthesis of mechanically interlocked aza-Pechmann dyes with benzylic amide macrocycles, along with the study of how the mechanical bond impacts their stability, photophysical and redox properties. Rotaxanes composed of Pechmann dilactams as threads exhibit one of the highest energy barriers for macrocyclic ring rotation, highlighting the strength of the attractive interactions ring-thread within the interlocked structure. Their enhanced thermal stability, compared to the non-interlocked counterparts, evidences the protective role of the macrocycle. Computational and electrochemical analyses indicate that the benzylic amide macrocycle improves the stability of the HOMO and LUMO orbitals of the interlocked dyes. Finally, spectroscopic and electrochemical data reveal that the macrocycle subtly modulates the optoelectronic and redox behaviour of the Pechmann dilactams.
Collapse
Affiliation(s)
- Guillermo Cutillas-Font
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum 30100 Murcia Spain
| | - Aurelia Pastor
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum 30100 Murcia Spain
| | - Mateo Alajarin
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum 30100 Murcia Spain
| | - Alberto Martinez-Cuezva
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum 30100 Murcia Spain
| | - Marta Marin-Luna
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum 30100 Murcia Spain
| | - Belen Batanero
- Department of Organic Chemistry and Inorganic Chemistry, University of Alcala, Institute of Chemical Research AndrésM. del Rio 28805 Alcalá de Henares Madrid Spain
| | - Jose Berna
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum 30100 Murcia Spain
| |
Collapse
|
2
|
Zhou Y, Zhang W, Yu G. Recent structural evolution of lactam- and imide-functionalized polymers applied in organic field-effect transistors and organic solar cells. Chem Sci 2021; 12:6844-6878. [PMID: 34123315 PMCID: PMC8153080 DOI: 10.1039/d1sc01711j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/21/2021] [Indexed: 11/21/2022] Open
Abstract
Organic semiconductor materials, especially donor-acceptor (D-A) polymers, have been increasingly applied in organic optoelectronic devices, such as organic field-effect transistors (OFETs) and organic solar cells (OSCs). Plenty of high-performance OFETs and OSCs have been achieved based on varieties of structurally modified D-A polymers. As the basic building block of D-A polymers, acceptor moieties have drawn much attention. Among the numerous types, lactam- and imide-functionalized electron-deficient building blocks have been widely investigated. In this review, the structural evolution of lactam- or imide-containing acceptors (for instance, diketopyrrolopyrrole, isoindigo, naphthalene diimide, and perylene diimide) is covered and their representative polymers applied in OFETs and OSCs are also discussed, with a focus on the effect of varied structurally modified acceptor moieties on the physicochemical and photoelectrical properties of polymers. Additionally, this review discusses the current issues that need to be settled down and the further development of new types of acceptors. It is hoped that this review could help design new electron-deficient building blocks, find a more valid method to modify already reported acceptor units, and achieve high-performance semiconductor materials eventually.
Collapse
Affiliation(s)
- Yankai Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
3
|
Shi D, Yu X, Chen L, Chen D, Liu Z, Zhang X, Zhang G, Zhang D. Selenophene‐Flanked
Diketopyrrolopyrrole Based Conjugated Polymers for Ambipolar
Field‐Effect
Transistors. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dandan Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaobo Yu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Liangliang Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Daoliang Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Zitong Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Xisha Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
4
|
Ding Y, Zhao F, Kim S, Wang X, Lu H, Zhang G, Cho K, Qiu L. Azaisoindigo-Based Polymers with a Linear Hybrid Siloxane-Based Side Chain for High-Performance Semiconductors Processable with Nonchlorinated Solvents. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41832-41841. [PMID: 32865385 DOI: 10.1021/acsami.0c11436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing nonchlorinated solvent-processed polymeric semiconductors to avoid environmental concerns and health hazards caused by chlorinated solvents is especially urgent. Here, a molecular design strategy, composed of backbone fluorination and side chain optimization, is used for preparing high-solubility and high-performance azaisoindigo-based polymers. The effects of different backbones and side chains on the solubility, film crystallinity, molecular stacking, and charge transport properties are mainly investigated. A long linear hybrid siloxane-based chain (C6-Si7) is chosen to improve the solubility, while the incorporation of fluorine (F) is used to enhance the film crystallinity and charge mobility. By optimizing the backbone and side chain, both solubility and charge mobility of the azaisoindigo-based polymer are significantly improved. As a result, PAIIDBFT-Si films processed with toluene, tetrahydrofuran, ether, and alkanes, achieved charge mobilities of 4.14, 3.78, 2.14, and 2.34 cm2 V-1 s-1, respectively. The current study provides an effective strategy for the design and synthesis of high-performance polymeric semiconductors processed with nonchlorinated solvents.
Collapse
Affiliation(s)
- Yafei Ding
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Fengsheng Zhao
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Sanghyo Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Xiaohong Wang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Hongbo Lu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Guobing Zhang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
5
|
Tang Z, Xu X, Li R, Yu L, Meng L, Wang Y, Li Y, Peng Q. Asymmetric Siloxane Functional Side Chains Enable High-Performance Donor Copolymers for Photovoltaic Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17760-17768. [PMID: 32148023 DOI: 10.1021/acsami.9b20204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, three benzodithiophene-benzotriazole alternated wide band gap copolymers attaching symmetric or asymmetric conjugated side chains, namely, PDBTFBTA-2T, PBDTFTBA-TSi, and PBDTFBTA-2Si, were developed for efficient nonfullerene polymer solar cells. The symmetry effect of the side chains was investigated in detail on the overall properties of these donor polymers. The results demonstrated that the introduced siloxane functional groups showed less effect on the absorption and frontier orbital levels of the prepared polymers but had a significant effect on the miscibility between these polymer donors and the nonfullerene acceptor. When increasing the content of siloxane functional groups, the miscibility of the polymer donors and Y6 would be improved, leading to the decreased domain size and more mixed domains. Interestingly, the active blend based on PBDTFTBA-TSi with asymmetric side chains exhibited more balanced miscibility, carrier mobility, and phase separation, benefiting exciton diffusion and dissociation. Therefore, a champion power conversion efficiency (PCE) of 14.18% was achieved finally in PBDTFTBA-TSi devices, which was 20.6 and 19.0% higher than the symmetric counterparts of PBTFBTA-2T devices (PCE = 11.76%) and PBDTFBTA-2Si devices (PCE = 11.92%), respectively. This work highlights that the asymmetric side-chain engineering based on siloxane functional groups is a promising design strategy for high-performance polymer donor semiconductors.
Collapse
Affiliation(s)
- Ziye Tang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Xiaopeng Xu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Suffolk, Upton, New York 11973, United States
| | - Liyang Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuliang Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Ying Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Qiang Peng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
6
|
Xu W, Zhang M, Xiao J, Zeng M, Ye L, Weng C, Zhao B, Zhang J, Tan S. Improved photovoltaic properties of PM6-based terpolymer donors containing benzothiadiazole with a siloxane-terminated side chain. Polym Chem 2020. [DOI: 10.1039/d0py00890g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A new series of PM6-based terpolymers (PM10Si, PM20Si, and PM30Si) were designed and synthesized, and their photovoltaic properties based on the inverted deviced and the two-step sequential deposition (SD) were studied.
Collapse
Affiliation(s)
- Wenjing Xu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Min Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Jingbo Xiao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Min Zeng
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Linglong Ye
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Chao Weng
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Bin Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Jianqi Zhang
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Songting Tan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| |
Collapse
|
7
|
Yang Y, Liu Z, Zhang G, Zhang X, Zhang D. The Effects of Side Chains on the Charge Mobilities and Functionalities of Semiconducting Conjugated Polymers beyond Solubilities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903104. [PMID: 31483542 DOI: 10.1002/adma.201903104] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/05/2019] [Indexed: 05/13/2023]
Abstract
Recent decades have witnessed the rapid development of semiconducting polymers in terms of high charge mobilities and applications in transistors. Significant efforts have been made to develop various conjugated frameworks and linkers. However, studies are increasingly demonstrating that the side chains of semiconducting polymers can significantly affect interchain packing, thin film crystallinity, and thus semiconducting performance. Ways to modify the side alkyl chains to improve the interchain packing order and charge mobilities for conjugated polymers are first discussed. It is shown that modifying the branching chains by moving the branching points away from the backbones can boost the charge mobilities, which can also be improved through partially replacing branching chains with linear ones. Second, the effects of side chains with heteroatoms and functional groups are discussed. The siloxane-terminated side chains are utilized to enhance the semiconducting properties. The fluorinated alkyl chains are beneficial for improving both charge mobility and air stability. Incorporating H bonding group side chains can improve thin film crystallinities and boost charge mobilities. Notably, incorporating functional groups (e.g., glycol, tetrathiafulvalene, and thymine) into side chains can improve the selectivity of field-effect transistor (FET)-based sensors, while photochromic group containing side chains in conjugated polymers result in photoresponsive semiconductors and optically tunable FETs.
Collapse
Affiliation(s)
- Yizhou Yang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zitong Liu
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xisha Zhang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Qiao X, Ge Y, Li Y, Niu Y, Wu B. Preparation and Analyses of the Multifunctional Properties of 2D and 3D MOFs Constructed from Copper(I) Halides and Hexamethylenetetramine. ACS OMEGA 2019; 4:12402-12409. [PMID: 31460358 PMCID: PMC6681993 DOI: 10.1021/acsomega.9b01356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
In this article, two two-dimensional and three-dimensional metal-organic frameworks are synthesized by the self-assembly of copper(I) halide and the hexamethylenetetramine (hmt) ligand. Compound 1 is a two-dimensional metal-organic framework composed of a pyramidal Cu4I5 cluster and hexamethylenetetramine, in which hmt-bridged Cu clusters form a two-dimensional (4,4)-connected net with a point symbol of (44·62) (44·62). Compound 2 is a homochiral three-dimensional metal-organic framework material generated through an unusual spontaneous crystallization from achiral precursors. The two compounds were characterized by a series of analyses such as infrared spectroscopy, elemental analysis, circular dichroism spectroscopy, and powder X-ray diffraction. Both of them exhibit unexpected stability under a wide range of conditions of acid and base. In addition, the fluorescence intensity changes regularly under acid-base conditions. Stokes shift shows a good linear relationship with -log [H+], which makes them become promising acid-base sensors. Compounds 1 and 2 also display selective adsorption and a significant degradation effect on the organic dye methylene blue. In addition, the fluorescence study indicated that compound 2 could be used as a sensor to detect Cr3+.
Collapse
|
9
|
Ma J, Liu Z, Yao J, Wang Z, Zhang G, Zhang X, Zhang D. Improving Ambipolar Semiconducting Properties of Thiazole-Flanked Diketopyrrolopyrrole-Based Terpolymers by Incorporating Urea Groups in the Side-Chains. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jing Ma
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zitong Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jingjing Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhijie Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xisha Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
10
|
Liu Z, Zhang G, Zhang D. Modification of Side Chains of Conjugated Molecules and Polymers for Charge Mobility Enhancement and Sensing Functionality. Acc Chem Res 2018; 51:1422-1432. [PMID: 29771491 DOI: 10.1021/acs.accounts.8b00069] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Organic semiconductors have received increasing attentions in recent years because of their promising applications in various optoelectronic devices. The key performance metric for organic semiconductors is charge carrier mobility, which is governed by the electronic structures of conjugated backbones and intermolecular/interchain π-π interactions and packing in both microscopic and macroscopic levels. For this reason, more efforts have been paid to the design and synthesis of conjugated frameworks for organic semiconductors with high charge mobilities. However, recent studies manifest that appropriate modifications of side chains that are linked to conjugated frameworks can improve the intermolecular/interchain packing order and boost charge mobilities. In this Account, we discuss our research results in context of modification of side chains in organic semiconductors for charge mobility enhancement. These include the following: (i) The lengths of alkyl chains in sulfur-rich thiepin-fused heteroacences can dramatically influence the intermolecular arrangements and orbital overlaps, ushering in different hole mobilities. Inversely, the lamellar stacking modes of alkyl chains in naphthalene diimide (NDI) derivatives with tetrathiafulvalene (TTF) units are affected by the structures of conjugated cores. (ii) The steric hindrances owing to the bulky branching chains can be weakened by partial replacement of the branching alkyl chains with linear ones for diketopyrrolopyrrole (DPP)-based D (donor)-A (acceptor) conjugated polymers. Such modification of side chains makes the polymer backbones more planar and thus interchain packing order and charge mobilities are improved. The incorporation of hydrophilic tri(ethylene glycol) (TEG) chains into the polymers also leads to improved interchain packing order. In particular, the polymer in which TEG side chains are distributed uniformly exhibits relatively high charge mobility without thermal annealing. (iii) The incorporation of urea groups in the side chains induces the polymer chains to pack more orderly and form large domains because of the additional H-bonding among urea groups. Accordingly, thin film mobilities of the conjugated D-A polymers with side chains entailing urea groups are largely boosted in comparison with those of polymers of the same backbones with either branching alkyl chains or branching/linear alkyl chains. (iv) The torsions of branching alkyl chains in conjugated D-A polymers can be inhibited to some extent upon incorporation of tiny amount of NMe4I in the thin film. As a result, the polymer thin films with NMe4I exhibit improved crystallinity, and charge mobilities can be boosted by more than 20 times. (v) Side chains with functional groups in the conjugated polymers can endow the thin film field-effect transistors (FETs) with sensing functionality. FETs with the conjugated polymer with -COOH groups in the side chains show sensitive, selective, and fast responses toward ammonia and amines, while FETs with the ultrathin films of the polymer containing tetra(ethylene glycol) (TEEG) in the side chains can sense alcohol vapors (in particular ethanol vapor) sensitively and selectively with fast response.
Collapse
Affiliation(s)
- Zitong Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
11
|
Luo H, Dong X, Cai Z, Wang L, Liu Z. Pechmann Dye-Based Molecules Containing Fluorobenzene Moieties for Ambipolar Organic Semiconductors. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201700669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hewei Luo
- Department of Material and Chemical Engineering; Zhengzhou University of Light Industry; 5 Dongfeng Road Zhengzhou 450002 P. R. China
| | - Xiaobiao Dong
- Beijing National Laboratories for Molecular Sciences, CAS Key Laboratories of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications; School of Material Science & Engineering; Beijing Institute of Technology; Beijing 100081 P. R. China
| | - Lizhen Wang
- Department of Material and Chemical Engineering; Zhengzhou University of Light Industry; 5 Dongfeng Road Zhengzhou 450002 P. R. China
| | - Zitong Liu
- Beijing National Laboratories for Molecular Sciences, CAS Key Laboratories of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| |
Collapse
|
12
|
Ocheje MU, Charron BP, Cheng YH, Chuang CH, Soldera A, Chiu YC, Rondeau-Gagné S. Amide-Containing Alkyl Chains in Conjugated Polymers: Effect on Self-Assembly and Electronic Properties. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02393] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Michael U. Ocheje
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Brynn P. Charron
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Yu-Hsuan Cheng
- Department
of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Ching-Heng Chuang
- Department
of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Armand Soldera
- Département
de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| | - Yu-Cheng Chiu
- Department
of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Simon Rondeau-Gagné
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| |
Collapse
|
13
|
Lee KC, Lee HR, Kang SH, Lee J, Park YIL, Noh SM, Oh JH, Yang C. An efficient lactone-to-lactam conversion for the synthesis of thiophene Pechmann lactam and the characterization of polymers thereof. Polym Chem 2018. [DOI: 10.1039/c8py00997j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We proposed an efficient methodology for Pechmann lactone-to-lactam conversion for various molecular applications.
Collapse
Affiliation(s)
- Kyu Cheol Lee
- Department of Energy Engineering
- School of Energy and Chemical Engineering
- Perovtronics Research Center
- Low Dimensional Carbon Materials Center
- Ulsan National Institute of Science and Technology (UNIST)
| | - Hae Rang Lee
- School of Chemical and Biological Engineering
- Institute of Chemical Processes
- Seoul National University
- Seoul 08826
- South Korea
| | - So-Huei Kang
- Department of Energy Engineering
- School of Energy and Chemical Engineering
- Perovtronics Research Center
- Low Dimensional Carbon Materials Center
- Ulsan National Institute of Science and Technology (UNIST)
| | - Jungho Lee
- Department of Energy Engineering
- School of Energy and Chemical Engineering
- Perovtronics Research Center
- Low Dimensional Carbon Materials Center
- Ulsan National Institute of Science and Technology (UNIST)
| | - Young IL Park
- Research Center for Green Fine Chemicals
- Korea Research Institute of Chemical Technology
- Ulsan 44412
- South Korea
| | - Seung Man Noh
- Research Center for Green Fine Chemicals
- Korea Research Institute of Chemical Technology
- Ulsan 44412
- South Korea
| | - Joon Hak Oh
- School of Chemical and Biological Engineering
- Institute of Chemical Processes
- Seoul National University
- Seoul 08826
- South Korea
| | - Changduk Yang
- Department of Energy Engineering
- School of Energy and Chemical Engineering
- Perovtronics Research Center
- Low Dimensional Carbon Materials Center
- Ulsan National Institute of Science and Technology (UNIST)
| |
Collapse
|
14
|
Cai M, Zhao Z, Liu Y, Wang X, Liu Y, Lan Z, Wan X. N-Alkylation vs O-Alkylation: Influence on the Performance of a Polymeric Field-Effect Transistors Based on a Tetracyclic Lactam Building Block. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Mian Cai
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zhiyuan Zhao
- Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
| | - Yanfang Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, People’s Republic of China
| | - Xiao Wang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, People’s Republic of China
| | - Yunqi Liu
- Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
| | - Zhenggang Lan
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, People’s Republic of China
| | - Xiaobo Wan
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
15
|
Schroot R, Jäger M, Schubert US. Synthetic approaches towards structurally-defined electrochemically and (photo)redox-active polymer architectures. Chem Soc Rev 2017; 46:2754-2798. [DOI: 10.1039/c6cs00811a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This review details synthetic strategies leading to structurally-defined electrochemically and (photo)redox-active polymer architectures,e.g.block, graft and end functionalized (co)polymers.
Collapse
Affiliation(s)
- Robert Schroot
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Michael Jäger
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)
| |
Collapse
|
16
|
Zhang H, Zhao Z, Zhao N, Xie Y, Cai M, Wang X, Liu Y, Lan Z, Wan X. One-pot homopolymerization of thiophene-fused isoindigo for ambient-stable ambipolar organic field-effect transistors. RSC Adv 2017. [DOI: 10.1039/c7ra01139c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The homopolymer that was directly obtained via one-pot polymerization exhibited much higher ambipolar transport behavior than the copolymer.
Collapse
Affiliation(s)
- Huanrui Zhang
- CAS Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy & Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- People's Republic of China
| | - Zhiyuan Zhao
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100080
- People's Republic of China
- Northeast Normal University
| | - Na Zhao
- CAS Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy & Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- People's Republic of China
| | - Yu Xie
- CAS Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy & Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- People's Republic of China
| | - Mian Cai
- CAS Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy & Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- People's Republic of China
| | - Xiao Wang
- CAS Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy & Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- People's Republic of China
| | - Yunqi Liu
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100080
- People's Republic of China
| | - Zhenggang Lan
- CAS Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy & Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- People's Republic of China
| | - Xiaobo Wan
- CAS Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy & Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- People's Republic of China
| |
Collapse
|