1
|
Li G, Du P, Xu G, Guo X, Wang Q. Asymmetric Kinetic Resolution Polymerization of Racemic Lactide Mediated by Axial-Chiral Thiourea/Phosphazene Binary Organocatalyst. Chemistry 2024; 30:e202402201. [PMID: 39008613 DOI: 10.1002/chem.202402201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/17/2024]
Abstract
Asymmetric kinetic resolution polymerization (AKRP) provides an ideal way to obtain highly isotactic polylactide (PLA) with superior thermal-mechanical properties from racemic lactide (rac-LA). However, the development of a new catalytic system with concurrent high activity and selectivity at ambient temperature remains a great callenge. Here, a series of simple and effective binary organocatalytic pairs containing axial-chiral thioureas and commercially available phosphazene bases were designed. These chiral binary organocatalytic pairs allow for both high polymerization activity and moderate enantioselectivity for AKRP of rac-LA at room temperature, yielding semi-crystalline and metal-free stereoblock PLA with a melting temperature as high as 186 °C. The highest kinetic resolution coefficient (krel) of 8.5 at 47 % conversion was obtained, and D-LA was preferentially polymerized via kinetic resolution with a maximum selectivity factor (kD/kL) of 18.1, indicating that an enantiomorphic site control mechanism (ESC) was involved.
Collapse
Affiliation(s)
- Guojie Li
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Peng Du
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Guangqiang Xu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuanhua Guo
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinggang Wang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Zhang P, Ladelta V, Abou-Hamad E, Müller AJ, Hadjichristidis N. Catalyst switch strategy enabled a single polymer with five different crystalline phases. Nat Commun 2023; 14:7559. [PMID: 37985766 PMCID: PMC10662249 DOI: 10.1038/s41467-023-42955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023] Open
Abstract
Well-defined multicrystalline multiblock polymers are essential model polymers for advancing crystallization physics, phase separation, self-assembly, and improving the mechanical properties of materials. However, due to different chain properties and incompatible synthetic methodologies, multicrystalline multiblock polymers with more than two crystallites are rarely reported. Herein, by combining polyhomologation, ring-opening polymerization, and catalyst switch strategy, we synthesized a pentacrystalline pentablock quintopolymer, polyethylene-b-poly(ethylene oxide)-b-poly(ε-caprolactone)-b-poly(L-lactide)-b-polyglycolide (PE-b-PEO-b-PCL-b-PLLA-b-PGA). The fluoroalcohol-assisted catalyst switch enables the successful incorporation of a high melting point polyglycolide block into the complex multiblock structure. Solid-state nuclear magnetic resonance spectroscopy, X-ray diffraction, and differential scanning calorimetry revealed the existence of five different crystalline phases.
Collapse
Affiliation(s)
- Pengfei Zhang
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Chemistry Program, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Viko Ladelta
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Chemistry Program, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Edy Abou-Hamad
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Alejandro J Müller
- Department of Polymers and Advanced Materials, Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia-San Sebastián, Spain
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Chemistry Program, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
3
|
Zaky MS, Wirotius AL, Coulembier O, Guichard G, Taton D. Reaching High Stereoselectivity and Activity in Organocatalyzed Ring-Opening Polymerization of Racemic Lactide by the Combined Use of a Chiral (Thio)Urea and a N-Heterocyclic Carbene. ACS Macro Lett 2022; 11:1148-1155. [PMID: 36067070 DOI: 10.1021/acsmacrolett.2c00457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stereochemical control during polymerization is a key strategy of polymer chemistry to achieve semicrystalline engineered plastics. The stereoselective ring-opening polymerization (ROP) of racemic lactide (rac-LA), which can lead to highly isotactic polylactide (PLA), is one of the emblematic examples in this area. Surprisingly, stereoselective ROP of rac-LA employing chiral organocatalysts has been under-leveraged. Here we show that a commercially available chiral thiourea (TU1), or its urea homologue (U1), can be used in conjunction with an appropriately selected N-heterocyclic carbene (NHC) to trigger the stereoselective ROP of rac-LA at room temperature in toluene. Both a high organic catalysis activity (>90% monomer conversion in 5-9 h) and a high stereoselectivity (probability of formation of meso dyads, Pm, in the range 0.82-0.93) can be achieved by thus pairing a NHC and a chiral amino(thio)urea. The less sterically hindered and the more basic NHC, that is, a NHC bearing tert-butyl substituents (NHCtBu), provides the highest stereoselectivity when employed in conjunction with the chiral TU1 or U1. This asymmetric organic catalysis strategy, as applied here in polymerization chemistry, further expands the field of possibilities to achieve bioplastics with adapted thermomechanical properties.
Collapse
Affiliation(s)
- Mohamed Samir Zaky
- Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, INP-ENSCBP, 16 av, Pey Berland, 33607 PESSAC Cedex France
| | - Anne-Laure Wirotius
- Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, INP-ENSCBP, 16 av, Pey Berland, 33607 PESSAC Cedex France
| | - Olivier Coulembier
- Center of Innovation and Research in Materials and Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials, University of Mons, Mons B-7000, Belgium
| | - Gilles Guichard
- Univ. Bordeaux, CNRS, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, F-33607 Pessac, France
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques (LCPO), UMR 5629, Université de Bordeaux, INP-ENSCBP, 16 av, Pey Berland, 33607 PESSAC Cedex France
| |
Collapse
|
4
|
Yan Q, Li C, Yan T, Shen Y, Li Z. Chemically Recyclable Thermoplastic Polyurethane Elastomers via a Cascade Ring-Opening and Step-Growth Polymerization Strategy from Bio-renewable δ-Caprolactone. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00439] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qin Yan
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Changjian Li
- State Key Laboratory Base of Eco-Chemical Engineering; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ting Yan
- State Key Laboratory Base of Eco-Chemical Engineering; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yong Shen
- State Key Laboratory Base of Eco-Chemical Engineering; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory Base of Eco-Chemical Engineering; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
5
|
Wang R, Zhang H, Jiang M, Wang Z, Zhou G. Dynamics-Driven Controlled Polymerization to Synthesize Fully Renewable Poly(ester–ether)s. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rui Wang
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics of the Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Houyu Zhang
- JiLin University, State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China
| | - Min Jiang
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics of the Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Zhipeng Wang
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics of the Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Guangyuan Zhou
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics of the Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, Liaoning, China
- Jiangsu Sino-Tech Polymerization New Materials Industry Technology Research Institute, 6 Qingyang Road, Changzhou 213125, Jiangsu, China
| |
Collapse
|
6
|
Xie H, Lu H, Zhang Z, Li X, Yang X, Tu Y. Effect of Block Number and Weight Fraction on the Structure and Properties of Poly(butylene terephthalate)- block-Poly(tetramethylene oxide) Multiblock Copolymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02793] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hui Xie
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Huanjun Lu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhilan Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaohong Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaoming Yang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yingfeng Tu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
7
|
Chen J, Dong Y, Xiao C, Tao Y, Wang X. Organocatalyzed Ring-Opening Polymerization of Cyclic Lysine Derivative: Sustainable Access to Cationic Poly(ε-lysine) Mimics. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02689] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jinlong Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
| | - Yilin Dong
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
| |
Collapse
|
8
|
He T, Narumi A, Wang Y, Xu L, Sato SI, Shen X, Kakuchi T. Amphiphilic diblock copolymers of poly(glycidol) with biodegradable polyester/polycarbonate. organocatalytic one-pot ROP and self-assembling property. Polym Chem 2021. [DOI: 10.1039/d1py01026c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Poly(glycidol)-based block copolymers with excellent micelle formation properties were prepared via organocatalytic one-pot ROP.
Collapse
Affiliation(s)
- Tingyu He
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Jilin 130022, China
| | - Atsushi Narumi
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yanqiu Wang
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Jilin 130022, China
| | - Liang Xu
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Jilin 130022, China
| | - Shin-ichiro Sato
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Xiande Shen
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Jilin 130022, China
- Chongqing Research Institute, Changchun University of Science and Technology, No. 618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing City 401135, China
| | - Toyoji Kakuchi
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Jilin 130022, China
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Chongqing Research Institute, Changchun University of Science and Technology, No. 618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing City 401135, China
| |
Collapse
|
9
|
Diaz C, Mehrkhodavandi P. Strategies for the synthesis of block copolymers with biodegradable polyester segments. Polym Chem 2021. [DOI: 10.1039/d0py01534b] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxygenated block copolymers with biodegradable polyester segments can be prepared in one-pot through sequential or simultaneous addition of monomers. This review highlights the state of the art in this area.
Collapse
Affiliation(s)
- Carlos Diaz
- University of British Columbia
- Department of Chemistry
- Vancouver
- Canada
| | | |
Collapse
|
10
|
Ryzhakov D, Printz G, Jacques B, Messaoudi S, Dumas F, Dagorne S, Le Bideau F. Organo-catalyzed/initiated ring opening co-polymerization of cyclic anhydrides and epoxides: an emerging story. Polym Chem 2021. [DOI: 10.1039/d1py00020a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review deals with recent organo-catalyzed/initiated developments of co-polymerization of cyclic anhydrides and epoxides to access polyesters.
Collapse
Affiliation(s)
| | - Gaël Printz
- Institut de Chimie
- CNRS – Strasbourg University
- Strasbourg
- France
| | | | | | | | - Samuel Dagorne
- Institut de Chimie
- CNRS – Strasbourg University
- Strasbourg
- France
| | | |
Collapse
|
11
|
Huang H, Luo W, Zhu L, Wang Y, Zhang Z. Organocatalytic sequential ring-opening polymerization of cyclic ester/epoxide and N-sulfonyl aziridine: metal-free and easy access to block copolymers. Polym Chem 2021. [DOI: 10.1039/d1py00890k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequential ring-opening polymerization of ε-caprolactone (ε-CL)/propylene oxide (PO) and N-sulfonyl aziridine switched by tosyl isocyanate (TSI) allows the metal-free synthesis of polysulfonamide-based copolymers.
Collapse
Affiliation(s)
- Huishan Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Wenyi Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Linlin Zhu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Ying Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zhen Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education, Guangzhou 510641, P. R. China
| |
Collapse
|
12
|
|
13
|
Diaz C, Tomković T, Goonesinghe C, Hatzikiriakos SG, Mehrkhodavandi P. One-Pot Synthesis of Oxygenated Block Copolymers by Polymerization of Epoxides and Lactide Using Cationic Indium Complexes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Carlos Diaz
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Tanja Tomković
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Chatura Goonesinghe
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Savvas G. Hatzikiriakos
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Parisa Mehrkhodavandi
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
14
|
Fang G, Zhe W, Yanyun Z, Xiaowu W. Ionic (Co)Organocatalyst with (Thio)Urea Anion and Tetra‑
n
‑butyl Ammonium Cation for the Polymerization of γ‐Butyrolactone. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ge Fang
- College of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
| | - Wang Zhe
- CAS Key Laboratory of Biobased MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences Qingdao 266101 China
| | - Zhu Yanyun
- College of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
| | - Wang Xiaowu
- CAS Key Laboratory of Biobased MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences Qingdao 266101 China
| |
Collapse
|
15
|
Xia L, Zhang Z, Hong CY, You YZ. Synthesis of copolymer via hybrid polymerization: From random to well-defined sequence. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Pappuru S, Chakraborty D. Progress in metal-free cooperative catalysis for the ring-opening copolymerization of cyclic anhydrides and epoxides. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109276] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Xu J, Chen Y, Xiao W, Zhang J, Bu M, Zhang X, Lei C. Studying the Ring-Opening Polymerization of 1,5-Dioxepan-2-one with Organocatalysts. Polymers (Basel) 2019; 11:E1642. [PMID: 31658721 PMCID: PMC6835244 DOI: 10.3390/polym11101642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 11/21/2022] Open
Abstract
Three different organocatalysts, namely, 1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris (dimethylamino) phosphoranylidenamino]-2Λ5,4Λ5-catenadi(phosphazene) (t-BuP4), 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), have been used as 1,5-dioxepan-2-one (DXO) ring-opening polymerization (ROP) catalysts at varied reaction conditions. 1H NMR spectra, size exclusion chromatography (SEC) characterizations, and kinetic studies prove that the (co)polymerizations are proceeded in a controlled manner with the three organocatalysts. It is deduced that t-BuP4 and DBU catalysts are in an initiator/chain end activated ROP mechanism and TBD is in a nucleophilic ROP mechanism.
Collapse
Affiliation(s)
- Jinbao Xu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yang Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Wenhao Xiao
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jie Zhang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Minglu Bu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiaoqing Zhang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Caihong Lei
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
18
|
Jiang Z, Zhao J, Zhang G. Ionic Organocatalyst with a Urea Anion and Tetra- n-butyl Ammonium Cation for Rapid, Selective, and Versatile Ring-Opening Polymerization of Lactide. ACS Macro Lett 2019; 8:759-765. [PMID: 35619515 DOI: 10.1021/acsmacrolett.9b00418] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A highly active and chemoselective ionic organocatalyst is developed for room-temperature living/controlled ring-opening polymerization of lactide. The catalysts are prepared by a simple dehydration reaction between tetra-n-butyl ammonium hydroxide and an N,N'-diarylurea and used in cooperation with hydroxy initiators. Typically, poly(l-lactide) with near perfect isotacticity and widely tunable molar mass (4-130 kg mol-1) can be produced in <2 min (turnover frequency up to 120 000 h-1). Low molar mass distribution is observed in both short and substantially extended reaction times, clearly demonstrating the selectivity of catalyst for monomer enchainment over macromolecular transesterification. Versatile design and construction of diverse polylactide-based macromolecular structures are allowed thanks to the livingness of the polymerization and independence of initiator and catalyst. In addition to the hydrogen bond donor-acceptor type bifunctional activation mechanism, direct nucleophilic attack of the urea anion on the monomer and polymer is also shown which can be suppressed by the added hydroxy initiator.
Collapse
Affiliation(s)
- Zhuolun Jiang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| |
Collapse
|
19
|
Jiang ZL, Zhao JP, Zhang GZ. Readily Prepared and Tunable Ionic Organocatalysts for Ring-opening Polymerization of Lactones. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2285-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
|
21
|
Li Y, Zhao N, Wei C, Sun A, Liu S, Li Z. Binary organocatalytic system for ring-opening polymerization of ε-caprolactone and δ-valerolactone: Synergetic effects for enhanced selectivity. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Li H, Luo H, Zhao J, Zhang G. Sequence-Selective Terpolymerization from Monomer Mixtures Using a Simple Organocatalyst. ACS Macro Lett 2018; 7:1420-1425. [PMID: 35651231 DOI: 10.1021/acsmacrolett.8b00865] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One-step synthesis of block copolymer from mixed monomers is of great interest and challenge. Using a simple non-nucleophilic organobase as the catalyst, we have achieved sequence-selective terpolymerization from a mixture of phthalic anhydride (PA), an epoxide, and rac-lactide (LA). Alcohol-initiated alternating copolymerization of PA and epoxide occurs first and exclusively because PA is substantially more active than LA for reacting with base-activated hydroxyl. When PA is fully consumed, LA polymerizes from the termini of the first block while excess epoxide stays intact because of the mild basicity of the catalyst. The two polymerizations thus occur tandemly, both in chemoselective manners, so that an aromatic-aliphatic block copolyester is generated in this one-step synthesis. The effectiveness and versatility of this approach is demonstrated by the use of ethylene oxide and several monosubstituted epoxides as well as mono-, di-, or tetrahydroxy initiators.
Collapse
Affiliation(s)
- Heng Li
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Huitong Luo
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| |
Collapse
|
23
|
Li M, Tao Y, Tang J, Wang Y, Zhang X, Tao Y, Wang X. Synergetic Organocatalysis for Eliminating Epimerization in Ring-Opening Polymerizations Enables Synthesis of Stereoregular Isotactic Polyester. J Am Chem Soc 2018; 141:281-289. [DOI: 10.1021/jacs.8b09739] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Maosheng Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Yue Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Jiadong Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Yanchao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Xiaoyong Zhang
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
| |
Collapse
|
24
|
Zhang CJ, Hu LF, Wu HL, Cao XH, Zhang XH. Dual Organocatalysts for Highly Active and Selective Synthesis of Linear Poly(γ-butyrolactone)s with High Molecular Weights. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01757] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cheng-Jian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou Shi, Zhejiang Sheng 310027, China
| | - Lan-Fang Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou Shi, Zhejiang Sheng 310027, China
| | - Hai-Lin Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou Shi, Zhejiang Sheng 310027, China
| | - Xiao-Han Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou Shi, Zhejiang Sheng 310027, China
| | - Xing-Hong Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou Shi, Zhejiang Sheng 310027, China
| |
Collapse
|
25
|
Chen Y, Shen J, Liu S, Zhao J, Wang Y, Zhang G. High Efficiency Organic Lewis Pair Catalyst for Ring-Opening Polymerization of Epoxides with Chemoselectivity. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01852] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ye Chen
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Jizhou Shen
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, People’s Republic of China
| | - Shan Liu
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Yucai Wang
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, People’s Republic of China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| |
Collapse
|
26
|
Liu S, Ren C, Zhao N, Shen Y, Li Z. Phosphazene Bases as Organocatalysts for Ring-Opening Polymerization of Cyclic Esters. Macromol Rapid Commun 2018; 39:e1800485. [DOI: 10.1002/marc.201800485] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/03/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Shaofeng Liu
- Key Laboratory of Biobased Polymer Materials; Shandong Provincial Education Department; College of Polymer Science and Engineering; Qingdao University of Science and Technology; 53 Zhengzhou Rd. Qingdao 266042 China
| | - Chuanli Ren
- Key Laboratory of Biobased Polymer Materials; Shandong Provincial Education Department; College of Polymer Science and Engineering; Qingdao University of Science and Technology; 53 Zhengzhou Rd. Qingdao 266042 China
| | - Na Zhao
- Key Laboratory of Biobased Polymer Materials; Shandong Provincial Education Department; College of Polymer Science and Engineering; Qingdao University of Science and Technology; 53 Zhengzhou Rd. Qingdao 266042 China
| | - Yong Shen
- Key Laboratory of Biobased Polymer Materials; Shandong Provincial Education Department; College of Polymer Science and Engineering; Qingdao University of Science and Technology; 53 Zhengzhou Rd. Qingdao 266042 China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials; Shandong Provincial Education Department; College of Polymer Science and Engineering; Qingdao University of Science and Technology; 53 Zhengzhou Rd. Qingdao 266042 China
| |
Collapse
|
27
|
Zhang CJ, Wu HL, Li Y, Yang JL, Zhang XH. Precise synthesis of sulfur-containing polymers via cooperative dual organocatalysts with high activity. Nat Commun 2018; 9:2137. [PMID: 29849024 PMCID: PMC5976647 DOI: 10.1038/s41467-018-04554-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 05/10/2018] [Indexed: 11/19/2022] Open
Abstract
Metal-free and controlled synthesis of sulfur-containing polymer is still a big challenge in polymer chemistry. Here, we report a metal-free, living copolymerization of carbonyl sulfide (COS) with epoxides via the cooperative catalysis of organic Lewis pairs including bases (e.g.: phosphazene, amidine, and guanidine) and thioureas as hydrogen-bond donors, afford well-defined poly(monothiocarbonate)s with 100% alternating degree, >99% tail-to-head content, controlled molecular weights (up to 98.4 kg/mol), and narrow molecular weight distributions (1.13-1.23). The effect of the types of Lewis pairs on the copolymerization of COS with several epoxides is investigated. The turnover frequencies (TOFs) of these Lewis pairs are as high as 112 h-1 at 25 °C. Kinetic and mechanistic results suggest that the supramolecular specific recognition of thiourea to epoxide and base to COS promote the copolymerization cooperatively. This strategy provides commercially available Lewis pairs for metal-free synthesis of sulfur-containing polymers with precise structure.
Collapse
Affiliation(s)
- Cheng-Jian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hai-Lin Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yang Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Liang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xing-Hong Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
28
|
Xia Y, Zhao J. Macromolecular architectures based on organocatalytic ring-opening (co)polymerization of epoxides. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.03.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Ladelta V, Kim JD, Bilalis P, Gnanou Y, Hadjichristidis N. Block Copolymers of Macrolactones/Small Lactones by a “Catalyst-Switch” Organocatalytic Strategy. Thermal Properties and Phase Behavior. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00153] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Liu Y, Wang X, Li Z, Wei F, Zhu H, Dong H, Chen S, Sun H, Yang K, Guo K. A switch from anionic to bifunctional H-bonding catalyzed ring-opening polymerizations towards polyether–polyester diblock copolymers. Polym Chem 2018. [DOI: 10.1039/c7py01842h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A switch of an anionic ROP of epoxides into a bifunctional H-bonding ROP of cyclic esters paved a new avenue to one-pot, sequential, and block copolymerizations to previously rare polyether-block-polyester copolymers.
Collapse
|
31
|
Gradišar Š, Žagar E, Pahovnik D. Hybrid block copolymers of polyesters/polycarbonates and polypeptides synthesized via one-pot sequential ring-opening polymerization. Polym Chem 2018. [DOI: 10.1039/c8py00835c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Polyester/polycarbonate-b-polypeptide hybrid block copolymers were synthesized by a sequential ring-opening polymerization in a one-pot manner.
Collapse
Affiliation(s)
- Špela Gradišar
- National Institute of Chemistry
- Department of Polymer Chemistry and Technology
- 1000 Ljubljana
- Slovenia
- University of Ljubljana
| | - Ema Žagar
- National Institute of Chemistry
- Department of Polymer Chemistry and Technology
- 1000 Ljubljana
- Slovenia
| | - David Pahovnik
- National Institute of Chemistry
- Department of Polymer Chemistry and Technology
- 1000 Ljubljana
- Slovenia
| |
Collapse
|
32
|
Phosphoniums as catalysts for metal-free polymerization: Synthesis of well-defined poly(propylene oxide). J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.05.094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
|
34
|
Zhang H, Hu S, Zhao J, Zhang G. Phosphazene-Catalyzed Alternating Copolymerization of Dihydrocoumarin and Ethylene Oxide: Weaker Is Better. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00599] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hongxin Zhang
- Faculty of Materials Science
and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Shuangyan Hu
- Faculty of Materials Science
and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Junpeng Zhao
- Faculty of Materials Science
and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Guangzhao Zhang
- Faculty of Materials Science
and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| |
Collapse
|