1
|
Liu X, Hong M, Falivene L, Cavallo L, Chen EYX. Closed-Loop Polymer Upcycling by Installing Property-Enhancing Comonomer Sequences and Recyclability. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00817] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xia Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Miao Hong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Laura Falivene
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Eugene Y.-X. Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
2
|
Nowalk JA, Swisher JH, Meyer TY. Influence of Short-Range Scrambling of Monomer Order on the Hydrolysis Behaviors of Sequenced Degradable Polyesters. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jamie A. Nowalk
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jordan H. Swisher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Tara Y. Meyer
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
3
|
Austin MJ, Rosales AM. Tunable biomaterials from synthetic, sequence-controlled polymers. Biomater Sci 2019; 7:490-505. [PMID: 30628589 DOI: 10.1039/c8bm01215f] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polymeric biomaterials have many applications including therapeutic delivery vehicles, medical implants and devices, and tissue engineering scaffolds. Both naturally-derived and synthetic materials have successfully been used for these applications in the clinic. However, the increasing complexity of these applications requires materials with advanced properties, especially customizable or tunable materials with bioactivity. To address this issue, there have been recent efforts to better recapitulate the properties of natural materials using synthetic biomaterials composed of sequence-controlled polymers. Sequence control mimics the primary structure found in biopolymers, and in many cases, provides an extra handle for functionality in synthetic polymers. Here, we first review the advances in synthetic methods that have enabled sequence-controlled biomaterials on a relevant scale, and discuss strategies for choosing functional sequences from a biomaterials engineering context. Then, we highlight several recent studies that show strong impact of sequence control on biomaterial properties, including in vitro and in vivo behavior, in the areas of hydrogels, therapeutic materials, and novel applications such as molecular barcodes for medical devices. The role of sequence control in biomaterials properties is an emerging research area, and there remain many opportunities for investigation. Further study of this topic may significantly advance our understanding of bioactive or smart materials, as well as contribute design rules to guide the development of synthetic biomaterials for future applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mariah J Austin
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
4
|
Nowalk JA, Fang C, Short AL, Weiss RM, Swisher JH, Liu P, Meyer TY. Sequence-Controlled Polymers Through Entropy-Driven Ring-Opening Metathesis Polymerization: Theory, Molecular Weight Control, and Monomer Design. J Am Chem Soc 2019; 141:5741-5752. [PMID: 30714723 PMCID: PMC6685222 DOI: 10.1021/jacs.8b13120] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bulk properties of a copolymer are directly affected by monomer sequence, yet efficient, scalable, and controllable syntheses of sequenced copolymers remain a defining challenge in polymer science. We have previously demonstrated, using polymers prepared by a step-growth synthesis, that hydrolytic degradation of poly(lactic- co-glycolic acid)s is dramatically affected by sequence. While much was learned, the step-growth mechanism gave no molecular weight control, unpredictable yields, and meager scalability. Herein, we describe the synthesis of closely related sequenced polyesters prepared by entropy-driven ring-opening metathesis polymerization (ED-ROMP) of strainless macromonomers with imbedded monomer sequences of lactic, glycolic, 6-hydroxy hexanoic, and syringic acids. The incorporation of ethylene glycol and metathesis linkers facilitated synthesis and provided the olefin functionality needed for ED-ROMP. Ring-closing to prepare the cyclic macromonomers was demonstrated using both ring-closing metathesis and macrolactonization reactions. Polymerization produced macromolecules with controlled molecular weights on a multigram scale. To further enhance molecular weight control, the macromonomers were prepared with cis-olefins in the metathesis-active segment. Under these selectivity-enhanced (SEED-ROMP) conditions, first-order kinetics and narrow dispersities were observed and the effect of catalyst initiation rate on the polymerization was investigated. Enhanced living character was further demonstrated through the preparation of block copolymers. Computational analysis suggested that the enhanced polymerization kinetics were due to the cis-macrocyclic olefin being less flexible and having a larger population of metathesis-reactive conformers. Although used for polyesters in this investigation, SEED-ROMP represents a general method for incorporation of sequenced segments into molecular weight-controlled polymers.
Collapse
Affiliation(s)
- Jamie A. Nowalk
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Cheng Fang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Computational Modeling & Simulation Program, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
| | - Amy L. Short
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ryan M. Weiss
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jordan H. Swisher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Tara Yvonne Meyer
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15219, United States
| |
Collapse
|
5
|
Abstract
Sequence-defined polymer: A promising gateway for the next generation polymeric materials and vast opportunities for new synthetic strategies, functional diversity and its material and biomedical applications.
Collapse
Affiliation(s)
| | - Mintu Porel
- Discipline of Chemistry
- Indian Institute of Technology Palakkad
- India
| |
Collapse
|
6
|
English SL, Forsythe JG. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of model prebiotic peptides: Optimization of sample preparation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1507-1513. [PMID: 29885215 DOI: 10.1002/rcm.8201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Depsipeptides, or peptides with a mixture of amide and ester linkages, may have evolved into peptides on primordial Earth. Previous studies on depsipeptides utilized electrospray ionization ion mobility quadrupole time-of-flight (ESI-IM-QTOF) tandem mass spectrometry; such analysis was thorough yet time-consuming. Here, a complementary matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) approach was optimized for rapid characterization of depsipeptide length and monomer composition. METHODS Depsipeptide mixtures of varying hydrophobicity were formed by subjecting aqueous mixtures of α-hydroxy acids and α-amino acids to evaporative cycles. Ester and amide content of depsipeptides was orthogonally confirmed using infrared spectroscopy. MALDI-TOF MS analysis was performed on a Voyager DE-STR in reflection geometry and positive ion mode. Optimization parameters included choice of matrix, sample solvent, matrix-to-analyte ratio, and ionization additives. RESULTS It was determined that evaporated depsipeptide samples should be mixed with 2,5-dihydroxybenzoic acid (DHB) matrix in order to detect the highest number of unique signals. Low matrix-to-analyte ratios were found to generate higher quality spectra, likely due to a combination of matrix suppression and improved co-crystallization. Using this optimized protocol, a new depsipeptide mixture was characterized. CONCLUSIONS Understanding the diversity and chemical evolution of proto-peptides is of interest to origins-of-life research. Here, we have demonstrated MALDI-TOF MS can be used to rapidly screen the length and monomer composition of model prebiotic peptides containing a mixture of ester and amide backbone linkages.
Collapse
Affiliation(s)
- Sloane L English
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC, 29424
- NSF/NASA Center for Chemical Evolution
| | - Jay G Forsythe
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC, 29424
- NSF/NASA Center for Chemical Evolution
| |
Collapse
|
7
|
Yin X, Hewitt DRO, Quah SP, Zheng B, Mattei GS, Khalifah PG, Grubbs RB, Bhatia SR. Impact of stereochemistry on rheology and nanostructure of PLA-PEO-PLA triblocks: stiff gels at intermediate l/d-lactide ratios. SOFT MATTER 2018; 14:7255-7263. [PMID: 30137095 DOI: 10.1039/c8sm01559g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report rheology and structural studies of poly(lactide)-poly(ethylene oxide)-poly(lactide) (PLA-PEO-PLA) triblock copolymer gels with various ratios of l-lactide and d-lactide in the PLA blocks. These materials form associative micellar gels in water, and previous work has shown that stereoregular triblocks with a l/d ratio of 100/0 form much stiffer gels than triblocks with a 50/50 l/d ratio. Our systems display an unexpected maximum in the storage modulus, G', of the hydrogels at intermediate l/d ratio. The impact of stereochemistry on the rheology is very striking; gels with an l/d ratio of 85/15 have storage moduli that are ∼1-2 orders of magnitude higher than hydrogels with l/d ratios of 100/0. No stereocomplexation is observed in the gels, although PLLA crystals are found for gels with l/d ratios of 95/5 and 90/10, and SANS results show a decrease in the intermicellar spacing for intermediate l/d ratios. We expect the dominant contribution to the elasticity of the gels to be intermicellar bridging chains and attribute the rheology to a competition between an increase in the time for PLA endblocks to pull out of micelles as the l/d ratio is increased and PLLA crystallization occurs, and a decrease in the number of bridging chains for micelles with crystalline PLA domains, as formation of bridges may be hindered by crowded crystalline PLA domains. These results provide a new strategy for controlling the rheology of PLA-based hydrogels for potential applications in biomaterials, as well as fundamental insights into how intermicellar interactions can be tuned via stereochemistry.
Collapse
Affiliation(s)
- Xuechen Yin
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Wei J, Meng H, Guo B, Zhong Z, Meng F. Organocatalytic Ring-Opening Copolymerization of Trimethylene Carbonate and Dithiolane Trimethylene Carbonate: Impact of Organocatalysts on Copolymerization Kinetics and Copolymer Microstructures. Biomacromolecules 2018; 19:2294-2301. [DOI: 10.1021/acs.biomac.8b00415] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jingjing Wei
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Hao Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Beibei Guo
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| |
Collapse
|
9
|
Zeng FR, Liang Y, Li ZL. Precision Aliphatic Polyesters via Segmer Assembly Polymerization. Molecules 2018; 23:E452. [PMID: 29463013 PMCID: PMC6017348 DOI: 10.3390/molecules23020452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 01/10/2023] Open
Abstract
Precise structure-property relation of a biodegradable polymer (e.g., aliphatic polyester) is anticipated only if monomer units and chiral centers are arranged in a defined primary sequence as a biomacromolecule. An emerging synthetic methodology, namely segmer assembly polymerization (SAP), is introduced in this paper to reveal the latest progress in polyester synthesis. Almost any periodic polyester envisioned can be synthesized via SAP using a programed linear or cyclic monomer. In this context, the macroscopic properties of a biodegradable polymer are fundamentally determined by microstructural information through a bottom-up approach. It can be highlighted that SAP ideally combines the precision of organic synthesis and the high efficiency of a polymerization reaction. Previously reported strategies including nucleophilic displacement, polyesterification, cross-metathesis polymerization (CMP), ring-opening polymerization (ROP), ring-opening metathesis polymerization (ROMP) and entropy-driven ring-opening metathesis polymerization (ED-ROMP) are critically reviewed in this paper to shed light on precision synthesis of aliphatic polyesters via SAP. Emerging yet challenging, SAP is a paradigm which reflects the convergence of organic and polymer chemistries and is also an efficient pathway to microstructural control. The current status, future challenges and promising trends in this realm are analyzed and discussed in this overview of the state-of-the-art.
Collapse
Affiliation(s)
- Fu-Rong Zeng
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Yang Liang
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Zi-Long Li
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
10
|
Monomer sequence in PLGA microparticles: Effects on acidic microclimates and in vivo inflammatory response. Acta Biomater 2018; 65:259-271. [PMID: 29101019 DOI: 10.1016/j.actbio.2017.10.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 01/12/2023]
Abstract
Controlling the backbone architecture of poly(lactic-co-glycolic acid)s (PLGAs) is demonstrated to have a strong influence on the production and release of acidic degradation by-products in microparticle matrices. Previous efforts for controlling the internal and external accumulation of acidity for PLGA microparticles have focused on the addition of excipients including neutralization and anti-inflammatory agents. In this report, we utilize a sequence-control strategy to tailor the microstructure of PLGA. The internal acidic microclimate distributions within sequence-defined and random PLGA microparticles were monitored in vitro using a non-invasive ratiometric two-photon microscopy (TPM) methodology. Sequence-defined PLGAs were found to have minimal changes in pH distribution and lower amounts of percolating acidic by-products. A parallel scanning electron microscopy study further linked external morphological events to internal degradation-induced structural changes. The properties of the sequenced and random copolymers characterized in vitro translated to differences in in vivo behavior. The sequence alternating copolymer, poly LG, had lower granulomatous foreign-body reactions compared to random racemic PLGA with a 50:50 ratio of lactic to glycolic acid. STATEMENT OF SIGNIFICANCE This paper demonstrates that changing the monomer sequence in poly(lactic-co-glycolic acid)s (PLGAs) leads to dramatic differences in the rate of degradation and the internal acidic microclimate of microparticles degrading in vitro. We note that the acidic microclimates within these particles were imaged for the first time with two-photon microscopy, which gives an extremely clear and detailed picture of the degradation process. Importantly, we also document that the observed sequence-controlled in vitro processes translate into differences in the in vivo behavior of polymers which have the same L to G composition but differing microstructures. These data, placed in the context of our prior studies on swelling, erosion, and MW loss (Biomaterials2017, 117, 66 and other references cited within the manuscript), provide significant insight not only about sequence effects in PLGAs but into the underlying mechanisms of PLGA degradation in general.
Collapse
|
11
|
Li ZL, Zeng FR, Ma JM, Sun LH, Zeng Z, Jiang H. Precision Aliphatic Polyesters with Alternating Microstructures via Cross-Metathesis Polymerization: An Event of Sequence Control. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/16/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Zi-Long Li
- Department of Chemistry; College of Science; Huazhong Agricultural University; Wuhan 430070 Hubei China
| | - Fu-Rong Zeng
- Department of Chemistry; College of Science; Huazhong Agricultural University; Wuhan 430070 Hubei China
| | - Ji-Mei Ma
- Department of Chemistry; College of Science; Huazhong Agricultural University; Wuhan 430070 Hubei China
| | - Lin-Hao Sun
- Department of Chemistry; College of Science; Huazhong Agricultural University; Wuhan 430070 Hubei China
| | - Zhen Zeng
- Department of Chemistry; College of Science; Huazhong Agricultural University; Wuhan 430070 Hubei China
| | - Hong Jiang
- Department of Chemistry; College of Science; Huazhong Agricultural University; Wuhan 430070 Hubei China
| |
Collapse
|