1
|
Bernhardt S, Yokosawa T, Spiecker E, Gröhn F. Polythiophene as a Double-Electrostatic Template for Zinc Oxide and Gold: Multicomponent Nano-Objects for Enhanced Photocatalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10312-10320. [PMID: 37462454 DOI: 10.1021/acs.langmuir.3c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Using electrostatic self-assembly and electrostatic nanotemplating, a quaternary nanostructured system consisting of zinc oxide nanoparticles, gold nanoparticles, poly[3-(potassium-4-butanoate)thiophene-2,5-diyl] (PT), and methyltrioctylammonium chloride (MTOA) (PT-MTOA-ZnO-Au) was designed for aqueous photocatalysis. The PT-MTOA hollow sphere aggregates served as an electrostatic template for both individual inorganic nanoparticles controlling their morphology, stabilizing the nanoparticles, and acting as a photosensitizer. The hybrid structures included spherical ZnO nanoparticles with a diameter of d = 2.6 nm and spherical Au nanoparticles with d = 6.0 nm embedded in PT-MTOA hollow spheres with a hydrodynamic radius of RH = 100 nm. The ZnO nanoparticles acted as the main catalyst, while the Au nanoparticles acted as the cocatalyst. As a photocatalytic model reaction, the dye degradation of methylene blue in aqueous solution using the full spectral range from UV to visible light was tested. The photocatalytic activity was optimized by varying the Zn and Au loading ratios and was substantially enhanced regarding the components; for example, it was increased by about 61% using PT-MTOA-ZnO-Au compared to the composite without gold particles. A photocatalytic mechanism of the methylene blue degradation was proposed when catalyzed by these multicomponent nano-objects. Thus, a simple procedure of templating two different nanoparticle species within the same cocatalytically active template has been demonstrated, which can be extended to other inorganic particles, making a variety of task-specific catalysts accessible.
Collapse
Affiliation(s)
- Sarah Bernhardt
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) and Bavarian Polymer Institute (BPI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Tadahiro Yokosawa
- Institute of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), IZNF, Cauerstraße 3, 91058 Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), IZNF, Cauerstraße 3, 91058 Erlangen, Germany
| | - Franziska Gröhn
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) and Bavarian Polymer Institute (BPI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
2
|
Tang X, Chang X, Zhang S, Li X, Wang S, Meng F. Self-assembly and magnetorheological performance of Fe3O4-based liquid-crystalline composites. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
3
|
Park W, Yun C, Yun S, Lee JJ, Bae S, Ho D, Earmme T, Kim C, Seo S. [1]Benzothieno[3,2-b][1]benzothiophene-based liquid crystalline organic semiconductor for solution-processed organic thin film transistors. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Domínguez SE, Vuolle A, Fattori A, Ääritalo T, Cangiotti M, Damlin P, Ottaviani MF, Kvarnström C. Enhancement of charge-assisted hydrogen bond capabilities due to O-alkylation proximity in alkoxy cationic polythiophenes: solution- and solid-state evidence via EPR, AFM and surface free energy. Phys Chem Chem Phys 2022; 24:6011-6025. [PMID: 35199803 DOI: 10.1039/d1cp04792b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the array of applications for cationic polythiophenes (CPTs), there is still a need for structure-function guidelines and mechanistic understanding of their solution- and solid-state properties. This work presents a solution- and solid-state investigation of the effect of O-alkylation proximity on the hydrogen bonding (H-bonding) capabilities of alkoxy-CPTs, based on comparing an imidazolium alkoxy CPT with strong cation-pi, pi+ and positive charge-assisted hydrogen bonding (+CAHB) capabilities (PIMa), with two isothiouronium alkoxy CPTs with two-point +CAHB capabilities (PT1 & PT2), which have short and long alkoxy side chains, respectively. Our results show that a closer proximity of O-alkylation strengthens the +CAHB capabilities of PT1: in aqueous solutions, PT2 aggregates have a stronger interaction with cationic EPR spin probes than aggregates of PIMa and PT1, which in turn show a similar extent of repulsion towards the cationic spin probes. In solid-state, atomic force microscopy (AFM) shows that PIMa generates dendritic structures onto mica, with features of diffusion-limited aggregation (DLA), indicating strong interactions with the anionic substrate due to a high configurational entropy during spreading, regardless of being drop-casted from water or 1,4-dioxane-water (W-DI), despite the latter disturbing H-bonding due to selective solvation. PT1 is also capable of generating dendritic structures resembling ballistic aggregation (BA). However, this occurs only when casting from water, since W-DI generates island-like aggregates resembling attachment limited aggregation (ALA), which is the morphology generated by PT2 regardless of the solvent. Finally, spin-coated films of PIMa and PT1 show similar dispersivity of the surface free energy (SFE), which in turn is larger than that in PT2 films, which are also more affected when casted from W-DI, presenting much larger decreases of dispersivity. These results constitute a novel empirical structure-function guideline that could be useful for optimal design and/or processing of alkoxy CPTs. For example, dendritic patterns have recently gained attention since the colloidal droplet drying is related to engineering applications including inkjet printing, biosensing, and functional material design, while the SFE is relevant for opto- and bio-electronic applications of conjugated polyelectrolytes (CPEs). This information could also be useful when analyzing previous results obtained from alkoxy CPTs with different side chain lengths.
Collapse
Affiliation(s)
- Sergio E Domínguez
- Department of Chemistry, Turku University Centre for Materials and Surfaces (MATSURF), University of Turku, 20014 Turku, Finland.
| | - Antti Vuolle
- Department of Chemistry, Turku University Centre for Materials and Surfaces (MATSURF), University of Turku, 20014 Turku, Finland.
| | - Alberto Fattori
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino, 61029 Urbino, Italy
| | - Timo Ääritalo
- Department of Chemistry, Turku University Centre for Materials and Surfaces (MATSURF), University of Turku, 20014 Turku, Finland.
| | - Michela Cangiotti
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino, 61029 Urbino, Italy
| | - Pia Damlin
- Department of Chemistry, Turku University Centre for Materials and Surfaces (MATSURF), University of Turku, 20014 Turku, Finland.
| | - M Francesca Ottaviani
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino, 61029 Urbino, Italy
| | - Carita Kvarnström
- Department of Chemistry, Turku University Centre for Materials and Surfaces (MATSURF), University of Turku, 20014 Turku, Finland.
| |
Collapse
|
5
|
Domínguez SE, Kohn B, Ääritalo T, Damlin P, Scheler U, Kvarnström C. Cationic polythiophene-anionic fullerene pair in water and water-dioxane: studies on hydrogen bonding capabilities, kinetic and thermodynamic properties. Phys Chem Chem Phys 2021; 23:21013-21028. [PMID: 34522930 DOI: 10.1039/d0cp05748g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Despite the vast array of solution- and solid-state bio-analytical, bioelectronic and optoelectronic applications of cationic polythiophenes (CPTs), the number of studies focused on the role of hydrogen bonding (H-bonding) between these and other molecules is scarce, regardless of whether H-bonding is expected to play an important role in several such applications. Also, despite the advantages of using cosolvents to systematically examine the molecular interactions, there are no such studies for CPTs to our knowledge. This work presents a steady-state UV-vis/fluorescence spectroscopic, kinetic and thermodynamic study on the H-bonding interactions between a water-soluble, cationic-anionic (isothiouronium-tetraphosphonate), polythiophene-fullerene donor-acceptor pair with two-point, charge-assisted H-bonding (CAHB) capabilities, tuned using water or a 1,4-dioxane-water mixture (W-DI). Both solvents generate photoinduced electron transfer (PET), fluorescence resonance energy transfer (FRET), spontaneous binding, H-bonding, ground-state complexing via multiple site binding, formation of micelle-like aggregates and equivalence points at a similar concentration of the quencher. However, in comparison with water, W-DI promotes less-ordered, less packed micellar aggregates, due to hydrophobic desolvation of the H-bond and larger solvent displacement during the PT1-4Fo complexation. This would decrease the extent of charge-transfer and the size of the sphere-of-quenching, mainly by displacements or rotations of the H-bonds, instead of elongations, together with a possible larger extent of diffusion-controlled static quenching. At [4Fo] larger than the equivalence point the micelles formed in water do not have available binding sites due to a tighter aggregation, causing a decrease in the quenching efficiency, while the micelles formed in W-DI start showing larger quenching efficiencies, possibly due to an increase in entropy that overcomes the desolvation of the H-bonding. These results could be useful when analyzing outputs from systems including CPTs with H-bonding capabilities, operating in (or casted from) solvents with clear differences in polarity and/or H-bonding capacity.
Collapse
Affiliation(s)
- Sergio E Domínguez
- Department of Chemistry, Turku University Centre for Materials and Surfaces (MatSurf), Vatselankatu 2, FI-20014 Turku, Finland.
| | - Benjamin Kohn
- Leibniz-Institut für, University of Turku, D-01069 Dresden, Germany
| | - Timo Ääritalo
- Department of Chemistry, Turku University Centre for Materials and Surfaces (MatSurf), Vatselankatu 2, FI-20014 Turku, Finland.
| | - Pia Damlin
- Department of Chemistry, Turku University Centre for Materials and Surfaces (MatSurf), Vatselankatu 2, FI-20014 Turku, Finland.
| | - Ulrich Scheler
- Leibniz-Institut für, University of Turku, D-01069 Dresden, Germany
| | - Carita Kvarnström
- Department of Chemistry, Turku University Centre for Materials and Surfaces (MatSurf), Vatselankatu 2, FI-20014 Turku, Finland.
| |
Collapse
|
6
|
Dynamic Gelation of Conductive Polymer Nanocomposites Consisting of Poly(3-hexylthiophene) and ZnO Nanowires. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5080199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The sol–gel transition of conductive nanocomposites consisting of poly(3-hexylthiophene) (P3HT) and ZnO nanowires in o-dichlorobenzene (o-DCB) has been investigated rheologically. The physical gelation of P3HT in o-DCB spontaneously occurs upon adding the small amount of ZnO nanowires. The rheological properties of the P3HT/ZnO nanocomposite gels have been systematically studied by varying factors such as polymer concentration, nanowire loading, and temperature. The nanocomposite gel exhibits shear-thinning in the low shear rate range and shear-thickening in the high shear rate range. The elastic storage modulus of the nanocomposite gel gradually increases with gelation time and is consistently independent of frequency at all investigated ranges. The isothermal gelation kinetics has been analyzed by monitoring the storage modulus with gelation time, and the data are well fitted with a first-order rate law. The structural analysis data reveal that the polymer forms the crystalline layer coated on ZnO nanowires. A fringed micelle model is proposed to explain the possible gelation mechanism.
Collapse
|
7
|
Sather NA, Sai H, Sasselli IR, Sato K, Ji W, Synatschke CV, Zambrotta RT, Edelbrock JF, Kohlmeyer RR, Hardin JO, Berrigan JD, Durstock MF, Mirau P, Stupp SI. 3D Printing of Supramolecular Polymer Hydrogels with Hierarchical Structure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005743. [PMID: 33448102 DOI: 10.1002/smll.202005743] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/09/2020] [Indexed: 05/28/2023]
Abstract
Liquid crystalline hydrogels are an attractive class of soft materials to direct charge transport, mechanical actuation, and cell migration. When such systems contain supramolecular polymers, it is possible in principle to easily shear align nanoscale structures and create bulk anisotropic properties. However, reproducibly fabricating and patterning aligned supramolecular domains in 3D hydrogels remains a challenge using conventional fabrication techniques. Here, a method is reported for 3D printing of ionically crosslinked liquid crystalline hydrogels from aqueous supramolecular polymer inks. Using a combination of experimental techniques and molecular dynamics simulations, it is found that pH and salt concentration govern intermolecular interactions among the self-assembled structures where lower charge densities on the supramolecular polymers and higher charge screening from the electrolyte result in higher viscosity inks. Enhanced hierarchical interactions among assemblies in high viscosity inks increase the printability and ultimately lead to greater nanoscale alignment in extruded macroscopic filaments when using small nozzle diameters and fast print speeds. The use of this approach is demonstrated to create materials with anisotropic ionic and electronic charge transport as well as scaffolds that trigger the macroscopic alignment of cells due to the synergy of supramolecular self-assembly and additive manufacturing.
Collapse
Affiliation(s)
- Nicholas A Sather
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, 11th floor, Chicago, IL, 60611, USA
| | - Hiroaki Sai
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, 11th floor, Chicago, IL, 60611, USA
| | - Ivan R Sasselli
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, 11th floor, Chicago, IL, 60611, USA
| | - Kohei Sato
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, 11th floor, Chicago, IL, 60611, USA
| | - Wei Ji
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, 11th floor, Chicago, IL, 60611, USA
| | - Christopher V Synatschke
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, 11th floor, Chicago, IL, 60611, USA
| | - Ryan T Zambrotta
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
| | - John F Edelbrock
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
| | - Ryan R Kohlmeyer
- Soft Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson Air Force Base, Dayton, OH, 45433, USA
- UES, Inc., 4401 Dayton-Xenia Road, Dayton, OH, 45432, USA
| | - James O Hardin
- Soft Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson Air Force Base, Dayton, OH, 45433, USA
- UES, Inc., 4401 Dayton-Xenia Road, Dayton, OH, 45432, USA
| | - John Daniel Berrigan
- Soft Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Michael F Durstock
- Soft Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Peter Mirau
- Soft Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Samuel I Stupp
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, 11th floor, Chicago, IL, 60611, USA
- Department of Medicine, Northwestern University, 676 North St. Clair Street, Chicago, IL, 60611, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
8
|
Kisiel A, Baniak B, Maksymiuk K, Michalska A. Ion-selective reversing aggregation-caused quenching - Maximizing optodes signal stability. Talanta 2020; 220:121358. [PMID: 32928393 DOI: 10.1016/j.talanta.2020.121358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/22/2022]
Abstract
An alternative optical signal transduction mechanism for ion-selective optodes is proposed. The nanostructural sensors benefit from ion-selective reversing aggregation caused quenching yielding turn-on, bright and highly stable optical signals. Selective incorporation of analyte results in transformation of the polymer dye from aggregate to a micelle structure, affecting spatial arrangement of chromophore groups in the nanostructure. Formation of micelles, induced by ion-selective interactions, is coupled with pronounced increase of emission due to decrease of aggregation caused quenching, characteristic for dispersed phase formation. The formed micelles are highly stable in solution, offering constant in time (days scale) emission signal. The important difference from other known systems is that the analyte binding induced change does not affect the chromophore group, but occurs in distant, terminal position of the side chain of the polymer. As a model system calcium selective optodes have been prepared. Thus obtained probes were characterized with broad analyte concentration range (from 10-7 to 10-3 M) emission signal increase. The turn-on response was observed within broad range of pH (6.3-8.9), with no sign of optical signal deterioration during 5 days contact with the analyte or more than two weeks storage.
Collapse
Affiliation(s)
- Anna Kisiel
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Barbara Baniak
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Krzysztof Maksymiuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Agata Michalska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland.
| |
Collapse
|
9
|
Armas JA, Reynolds KJ, Marsh ZM, Fernández-Blázquez JP, Ayala D, Cronin AD, Del Aguila J, Fideldy R, Abdou JP, Bilger DW, Vilatela JJ, Stefik M, Scott GE, Zhang S. Supramolecular Assembly of Oriented Spherulitic Crystals of Conjugated Polymers Surrounding Carbon Nanotube Fibers. Macromol Rapid Commun 2019; 40:e1900098. [PMID: 31328312 DOI: 10.1002/marc.201900098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/06/2019] [Indexed: 12/17/2022]
Abstract
The directed assembly of conjugated polymers into macroscopic organization with controlled orientation and placement is pivotal in improving device performance. Here, the supramolecular assembly of oriented spherulitic crystals of poly(3-butylthiophene) surrounding a single carbon nanotube fiber under controlled solvent evaporation of solution-cast films is reported. Oriented lamellar structures nucleate on the surface of the nanotube fiber in the form of a transcrystalline interphase. The factors influencing the formation of transcrystals are investigated in terms of chemical structure, crystallization temperature, and time. Dynamic process measurements exhibit the linear growth of transcrystals with time. Microstructural analysis of transcrystals reveals individual lamellar organization and crystal polymorphism. The form II modification occurs at low temperatures, while both form I and form II modifications coexist at high temperatures. A possible model is presented to interpret transcrystallization and polymorphism.
Collapse
Affiliation(s)
- Jeremy A Armas
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Karina J Reynolds
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Zachary M Marsh
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | - Denzel Ayala
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Adam D Cronin
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Jeremy Del Aguila
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Rikki Fideldy
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - John P Abdou
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - David W Bilger
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | | | - Morgan Stefik
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Gregory E Scott
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Shanju Zhang
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
10
|
Kasprzak CR, Scherzinger ET, Sarkar A, Miao M, Porcincula DH, Madriz AM, Pennewell ZM, Chau SS, Fernando R, Stefik M, Zhang S. Ordered Nanostructures of Carbon Nanotube–Polymer Composites from Lyotropic Liquid Crystal Templating. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christopher R. Kasprzak
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo CA 93407 USA
| | - Evan T. Scherzinger
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo CA 93407 USA
| | - Amrita Sarkar
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Miranda Miao
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo CA 93407 USA
| | - Dominique H. Porcincula
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo CA 93407 USA
| | - Alejandro M. Madriz
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo CA 93407 USA
| | - Zachary M. Pennewell
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo CA 93407 USA
| | - Sophia S. Chau
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo CA 93407 USA
| | - Raymond Fernando
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo CA 93407 USA
| | - Morgan Stefik
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Shanju Zhang
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo CA 93407 USA
| |
Collapse
|
11
|
Bilger D, Figueroa JA, Redeker ND, Sarkar A, Stefik M, Zhang S. Hydrogen-Bonding-Directed Ordered Assembly of Carboxylated Poly(3-Alkylthiophene)s. ACS OMEGA 2017; 2:8526-8535. [PMID: 31457389 PMCID: PMC6645037 DOI: 10.1021/acsomega.7b01361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/20/2017] [Indexed: 06/10/2023]
Abstract
Hydrogen-bonding-induced ordered assembly of poly(3-alkylthiophene)s derivatives bearing carboxylic acid groups has been investigated from diluted and concentrated solutions to solid films using ultraviolet-visible absorption spectroscopy, polarized optical microscopy, and four-point probe conductivity measurements. In dilute solutions, the polymer undergoes a spontaneous structural transition from disordered coil-like to ordered rodlike conformations, which is evidenced by time-dependent chromism. Many factors such as alkyl-chain length, types of solvents, and temperature are studied to understand the assembly behavior. Transition kinetics of the assembly process reveals a universal second-order rate law, indicating an intermolecular origin due to hydrogen bonding. When more concentrated, hydrogen bonding drives nematic liquid-crystalline gelation above a critical concentration and the gels are thermally reversible. Under an appropriate balance of mechanical and thermal stresses, uniform liquid-crystalline monodomains are obtained through the application of a mechanical shear force. The dried films made from the sheared solutions display both optical and electrical anisotropies, with a more than 200% increase in charge transport parallel to the direction of shear as opposed to that in the perpendicular one.
Collapse
Affiliation(s)
- David
W. Bilger
- Department
of Chemistry and Biochemistry, California
Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Jose A. Figueroa
- Department
of Chemistry and Biochemistry, California
Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Neil D. Redeker
- Department
of Chemistry and Biochemistry, California
Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Amrita Sarkar
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Morgan Stefik
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Shanju Zhang
- Department
of Chemistry and Biochemistry, California
Polytechnic State University, San Luis Obispo, California 93407, United States
| |
Collapse
|
12
|
Shinde S, Sartucci JL, Jones DK, Gavvalapalli N. Dynamic π-Conjugated Polymer Ionic Networks. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shekhar Shinde
- Department of Chemistry and
Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, D.C. 20057, United States
| | - Jenna L. Sartucci
- Department of Chemistry and
Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, D.C. 20057, United States
| | - Dorothy K. Jones
- Department of Chemistry and
Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, D.C. 20057, United States
| | - Nagarjuna Gavvalapalli
- Department of Chemistry and
Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, D.C. 20057, United States
| |
Collapse
|