1
|
Cui S, Murphy EA, Santra S, Bates FS, Lodge TP. Mesoscopic Morphologies in Frustrated ABC Bottlebrush Block Terpolymers. ACS NANO 2025. [PMID: 39760286 DOI: 10.1021/acsnano.4c13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Bottlebrush block polymers, characterized by densely grafted side chains extending from a backbone, have recently garnered significant attention. A particularly attractive feature is the accessibility of ordered morphologies with domain spacings exceeding several hundred nanometers, a capability that is challenging to achieve with linear polymers. These large morphologies make bottlebrush block polymers promising for various applications, such as photonic crystals. However, the structures observed in AB diblock bottlebrushes are generally limited to simple lamellae and cylindrical phases, which restricts their use in many applications. In this study, we synthesized a library of 50 ABC bottlebrush triblock terpolymers, poly(DL-lactide)-b-poly(ethylene-alt-propylene)-b-polystyrene (PLA-PEP-PS), spanning a wide range of compositions using ring-opening metathesis polymerization (ROMP) of norbornene-functionalized macromonomers. This constitutes a frustrated system, in that the mandatory internal interfaces (PLA/PEP and PEP/PS) have larger interfacial energies than PLA/PS. We systematically explored phase behavior using small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Morphological characterization revealed a series of intriguing mesoscopic structures, including layered microstructures, core-shell hexagonally packed cylinders (CSHEX, plane group p6mm), alternating tetragonally packed cylinders (ATET, plane group p4mm), and rectangular centered cylinders-in-undulating-lamellae (RCCUL, plane group c2mm). Adjustments in molecular weight resulted in a wide range of unit cell dimensions (exemplified by RCCUL), from 40 nm to over 130 nm. This work demonstrates that multiblock bottlebrushes offer promising opportunities for developing materials with diverse structures and a broad range of domain dimensions.
Collapse
Affiliation(s)
- Shuquan Cui
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Elizabeth A Murphy
- Materials Research Laboratory and Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Subrata Santra
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy P Lodge
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Gao L, Liu H, Liang X, Ito M, Nakajima K. Tracking the evolution of the morphology and stress distribution of SIS thermoplastic elastomers under tension using atomic force microscopy. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2402685. [PMID: 39315331 PMCID: PMC11418051 DOI: 10.1080/14686996.2024.2402685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024]
Abstract
Styrene-based ABA-type triblock copolymers and their blends are widely investigated thermoplastic elastomers (TPEs). The design of tough TPE materials with high strength and resilience requires further clarification of the relationship between microstructure and macroscopic properties of stretched samples. Here, we applied atomic force microscopy (AFM)-based quantitative nanomechanical mapping to study the deformation behavior of poly(styrene-b-isoprene-b-styrene) blends under tension. The results indicated that the glassy polystyrene (PS) domains deformed and inhomogeneous stress distributions developed in the initial stretching stage. At 200% strain, the glassy PS domains started to crack. The change in the peak value in the JKR Young's modulus diagram during stretching was consistent with the stress - strain curve. Analysis of the particles before and after stretching suggested that the glassy domains separated and reorganized during stretching.
Collapse
Affiliation(s)
- Ling Gao
- College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, Hubei, China
| | - Haonan Liu
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Xiaobin Liang
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Makiko Ito
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Ken Nakajima
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
3
|
Yamanaka R, Sugawara-Narutaki A, Takahashi R. Microphase Separation and Gelation through Polymerization-Induced Self-Assembly Using Star Polyethylene Glycols. ACS Macro Lett 2024; 13:1050-1055. [PMID: 39083349 PMCID: PMC11340017 DOI: 10.1021/acsmacrolett.4c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/17/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Polymerization-induced self-assembly (PISA) during the synthesis of diblock copolymers has garnered considerable interest; however, architectures beyond diblock copolymers have scarcely been explored. Here, we studied PISA using 4- and 8-arm star polyethylene glycol (PEG), as well as 2-arm (linear) PEG, wherein each terminus of PEG was functionalized with a chain-transfer agent, holding a constant molar mass for each arm. Styrene was polymerized from each PEG terminus through reversible addition-fragmentation chain-transfer (RAFT) polymerization in an ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate, [BMIM][PF6]), with a total solute concentration of 40 wt %. While the styrene monomer is soluble in [BMIM][PF6], polystyrene is not; thus, self-assembly and cross-linking (gelation) occur. Structural analysis by small-angle X-ray scattering revealed that a relatively ordered microphase-separated structure for PISA was observed. Two-arm PEG-PS formed hexagonally packed cylinders, whereas 4- and 8-arm PEG-PS exhibited hexagonal close-packed spheres and disordered spheres. The dynamics, studied by oscillatory rheology, were also influenced by the number of arms; the 4-arm star block copolymers showed the highest plateau modulus. This study demonstrates that the topology is an important factor in controlling the microphase-separated structure and mechanical properties when preparing gels through PISA.
Collapse
Affiliation(s)
- Riku Yamanaka
- Department
of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Ayae Sugawara-Narutaki
- Department
of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- Institute
of Biomaterials and Bioengineering, Tokyo
Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Rintaro Takahashi
- Department
of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
4
|
Chang CY, Manesi GM, Xie J, Shi AC, Shastry T, Avgeropoulos A, Ho RM. Topology Effect on Order-Disorder Transition of High-χ Block Copolymers. Macromolecules 2024; 57:7087-7097. [PMID: 39156194 PMCID: PMC11325650 DOI: 10.1021/acs.macromol.4c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/24/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024]
Abstract
This work aims to systematically examine the topology effect on the self-assembly of block copolymers. Compositionally, symmetric polystyrene-block-polydimethylsiloxane block copolymers (BCPs) with different chain topologies (diblock, three-arm star-block, and four-arm star-block) and various molecular weights are synthesized. These purposely designed block copolymers are used as a model system to investigate the topology effect on order-to-disorder transition temperature (T ODT) by temperature-resolved small-angle X-ray scattering experiments. An increase of the T ODT is observed when the arm number of BCPs with equivalent arm length (i.e., molecular weight) is increased from one to four. Based on the random-phase approximation (RPA), Flory-Huggins interaction parameter (χ) is determined from the regression of the measured T ODT. The observation by differential scanning calorimetry also demonstrates the shifting of the endothermic peak from the order-to-disorder transition of star-blocks to the higher temperature region, consistent with the scattering experiments and the RPA prediction.
Collapse
Affiliation(s)
- Cheng-Yen Chang
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan,
R.O.C.
| | - Gkreti-Maria Manesi
- Department
of Materials Science Engineering, University
of Ioannina, University Campus, Ioannina 45110, Greece
| | - Jiayu Xie
- Department
of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - An-Chang Shi
- Department
of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Thanmayee Shastry
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan,
R.O.C.
| | - Apostolos Avgeropoulos
- Department
of Materials Science Engineering, University
of Ioannina, University Campus, Ioannina 45110, Greece
| | - Rong-Ming Ho
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan,
R.O.C.
| |
Collapse
|
5
|
Xu Z, Chu X, Li W. Microscopic Origins of the Distinct Mechanical Response of ABA and ABC Block Copolymer Nanostructures. ACS Macro Lett 2024:240-246. [PMID: 38315127 DOI: 10.1021/acsmacrolett.3c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
It has been commonly believed that the ordered thermoplastic elastomers formed by the ABC triblock copolymer should have better mechanical performance than that by the ABA counterpart due to the higher bridging fraction. However, the thermoplastic elastomer of ABA was often observed to perform better than that of ABC. To compare the performance of two kinds of thermoplastic elastomers and unveil the underlying microscopic mechanism, we have calculated their stress-strain curves using coarse-grained molecular dynamics simulations in conjunction with self-consistent field theory. It is revealed that the stretching degree of the bridging blocks and the network connectivity play important roles in determining the mechanical properties in addition to the bridging fraction. The higher degree in the stretching of bridging blocks and network connectivity of the structure formed by the ABA triblock copolymer enables its superior mechanical performance over the ABC block copolymer.
Collapse
Affiliation(s)
- Zhanwen Xu
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xing Chu
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
6
|
Torres VM, Furton E, Sevening JN, Lloyd EC, Fukuto M, Li R, Pagan DC, Beese AM, Vogt BD, Hickey RJ. Revealing Deformation Mechanisms in Polymer-Grafted Thermoplastic Elastomers via In Situ Small-Angle X-ray Scattering. ACS APPLIED MATERIALS & INTERFACES 2023; 15:57941-57949. [PMID: 37816032 DOI: 10.1021/acsami.3c09445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The tunable properties of thermoplastic elastomers (TPEs), through polymer chemistry manipulations, enable these technologically critical materials to be employed in a broad range of applications. The need to "dial-in" the mechanical properties and responses of TPEs generally requires the design and synthesis of new macromolecules. In these designs, TPEs with nonlinear macromolecular architectures outperform the mechanical properties of their linear copolymer counterparts, but the differences in the deformation mechanism providing enhanced performance are unknown. Here, in situ small-angle X-ray scattering (SAXS) measurements during uniaxial extension reveal distinct deformation mechanisms between a commercially available linear poly(styrene)-poly(butadiene)-poly(styrene) (SBS) triblock copolymer and the grafted SBS version containing grafted poly(styrene) (PS) chains from the poly(butadiene) (PBD) midblock. The neat SBS (φSBS = 100%) sample deforms congruently with the macroscopic dimensions, with the domain spacing between spheres increasing and decreasing along and transverse to the stretch direction, respectively. At high extensions, end segment pullout from the PS-rich domains is detected, which is indicated by a disordering of SBS. Conversely, the PS-grafted SBS that is 30 vol % SBS and 70% styrene (φSBS = 30%) exhibits a lamellar morphology, and in situ SAXS measurements reveal an unexpected deformation mechanism. During deformation, there are two simultaneous processes: significant lamellar domain rearrangement to preferentially orient the lamellae planes parallel to the stretch direction and crazing. The samples whiten at high strains as expected for crazing, which corresponds with the emergence of features in the 2D SAXS pattern during stretching consistent with fibril-like structures that bridge the voids in crazes. The significant domain rearrangement in the grafted copolymers is attributed to the new junctions formed across multiple PS domains by the grafting of a single chain. The in situ SAXS measurements provide insights into the enhanced mechanical properties of grafted copolymers that arise through improved physical cross-linking that leads to nanostructure domain reorientation for self-reinforcement and craze formation where fibrils help to strengthen the polymer.
Collapse
Affiliation(s)
- Vincent M Torres
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Erik Furton
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jensen N Sevening
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Elisabeth C Lloyd
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Masafumi Fukuto
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Darren C Pagan
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Allison M Beese
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bryan D Vogt
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Robert J Hickey
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
7
|
Albanese K, Blankenship JR, Quah T, Zhang A, Delaney KT, Fredrickson GH, Bates CM, Hawker CJ. Improved Elastic Recovery from ABC Triblock Terpolymers. ACS POLYMERS AU 2023; 3:376-382. [PMID: 37841950 PMCID: PMC10571101 DOI: 10.1021/acspolymersau.3c00012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 10/17/2023]
Abstract
The promise of ABC triblock terpolymers for improving the mechanical properties of thermoplastic elastomers is demonstrated by comparison with symmetric ABA/CBC analogs having similar molecular weights and volume fraction of B and A/C domains. The ABC architecture enhances elasticity (up to 98% recovery over 10 cycles) in part through essentially full chain bridging between discrete hard domains leading to the minimization of mechanically unproductive loops. In addition, the unique phase space of ABC triblocks also enables the fraction of hard-block domains to be higher (fhard ≈ 0.4) while maintaining elasticity, which is traditionally only possible with non-linear architectures or highly asymmetric ABA triblock copolymers. These advantages of ABC triblock terpolymers provide a tunable platform to create materials with practical applications while improving our fundamental understanding of chain conformation and structure-property relationships in block copolymers.
Collapse
Affiliation(s)
- Kaitlin
R. Albanese
- Department
of Chemistry & Biochemistry, University
of California, Santa Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Jacob R. Blankenship
- Department
of Chemistry & Biochemistry, University
of California, Santa Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Timothy Quah
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Amy Zhang
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Kris T. Delaney
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Glenn H. Fredrickson
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials
Department, University of California, Santa Barbara, California 93106, United States
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Christopher M. Bates
- Department
of Chemistry & Biochemistry, University
of California, Santa Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials
Department, University of California, Santa Barbara, California 93106, United States
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Craig J. Hawker
- Department
of Chemistry & Biochemistry, University
of California, Santa Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials
Department, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
8
|
Hartmann F, Niebuur BJ, Koch M, Kraus T, Gallei M. Synthesis and Microphase Separation of Dendrimer-like Block Copolymers by Anionic Polymerization Strategies. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
9
|
Blankenship JR, Levi AE, Goldfeld DJ, Self JL, Alizadeh N, Chen D, Fredrickson GH, Bates CM. Asymmetric Miktoarm Star Polymers as Polyester Thermoplastic Elastomers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jacob R. Blankenship
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Adam E. Levi
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - David J. Goldfeld
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Jeffrey L. Self
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Nima Alizadeh
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Duyu Chen
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Glenn H. Fredrickson
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Christopher M. Bates
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
10
|
Potential of Graftmpolymers Bearing Inner Molten Block and Outer Glassy Block at the Graft Chains for Thermoplastic Elastomers with Enhanced Properties. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Haque FM, Ishibashi JSA, Lidston CAL, Shao H, Bates FS, Chang AB, Coates GW, Cramer CJ, Dauenhauer PJ, Dichtel WR, Ellison CJ, Gormong EA, Hamachi LS, Hoye TR, Jin M, Kalow JA, Kim HJ, Kumar G, LaSalle CJ, Liffland S, Lipinski BM, Pang Y, Parveen R, Peng X, Popowski Y, Prebihalo EA, Reddi Y, Reineke TM, Sheppard DT, Swartz JL, Tolman WB, Vlaisavljevich B, Wissinger J, Xu S, Hillmyer MA. Defining the Macromolecules of Tomorrow through Synergistic Sustainable Polymer Research. Chem Rev 2022; 122:6322-6373. [PMID: 35133803 DOI: 10.1021/acs.chemrev.1c00173] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transforming how plastics are made, unmade, and remade through innovative research and diverse partnerships that together foster environmental stewardship is critically important to a sustainable future. Designing, preparing, and implementing polymers derived from renewable resources for a wide range of advanced applications that promote future economic development, energy efficiency, and environmental sustainability are all central to these efforts. In this Chemical Reviews contribution, we take a comprehensive, integrated approach to summarize important and impactful contributions to this broad research arena. The Review highlights signature accomplishments across a broad research portfolio and is organized into four wide-ranging research themes that address the topic in a comprehensive manner: Feedstocks, Polymerization Processes and Techniques, Intended Use, and End of Use. We emphasize those successes that benefitted from collaborative engagements across disciplinary lines.
Collapse
Affiliation(s)
- Farihah M Haque
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jacob S A Ishibashi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Claire A L Lidston
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Huiling Shao
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alice B Chang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Christopher J Cramer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Paul J Dauenhauer
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Christopher J Ellison
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ethan A Gormong
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Leslie S Hamachi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mengyuan Jin
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hee Joong Kim
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gaurav Kumar
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J LaSalle
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephanie Liffland
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bryce M Lipinski
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1801, United States
| | - Yutong Pang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Riffat Parveen
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Xiayu Peng
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yanay Popowski
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Emily A Prebihalo
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yernaidu Reddi
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daylan T Sheppard
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jeremy L Swartz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - William B Tolman
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Jane Wissinger
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shu Xu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
12
|
Zhou P, Shi B, Liu Y, Li P, Wang G. Exploration of the modification-induced self-assembly (MISA) technique and the preparation of nano-objects with a functional poly(acrylic acid) core. Polym Chem 2022. [DOI: 10.1039/d2py00666a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The hydrolysis-based post-polymerization modification method was introduced into the self-assembly process and a modification-induced self-assembly (MISA) technique was presented.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Boyang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yuang Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Penghan Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
13
|
Wang C, Wu Y, Zhu Y, Ma H, Zhang M, Liu G, He J, Ni P. Investigation of eight-arm tapered star copolymers prepared by anionic copolymerization and coupling reaction. Polym Chem 2022. [DOI: 10.1039/d2py00567k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of eight-arm tapered star copolymers 8[P(I-co-S)x]-POSS were synthesized by the coupling reaction between octavinyl POSS and the tapered living copolymer chains obtained from statistical anionic copolymerization.
Collapse
Affiliation(s)
- Chengmeng Wang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yibo Wu
- Beijing Key Lab of Special Elastomeric Composite Materials, Beijing, 102617, P. R. China
| | - Yihui Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Hongbing Ma
- Testing and Analysis Center, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - GengXin Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Beijing Key Lab of Special Elastomeric Composite Materials, Beijing, 102617, P. R. China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
14
|
Kawarazaki I, Hayashi M, Shibata A, Kaai M. Extraction of intrinsic effects of glassy domain cross-linking on the tensile properties of ABA block copolymer elastomers via photo cross-linking approach. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Liffland S, Hillmyer MA. Enhanced Mechanical Properties of Aliphatic Polyester Thermoplastic Elastomers through Star Block Architectures. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01357] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Stephanie Liffland
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Marc A. Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
16
|
Baeza GP. Recent advances on the structure–properties relationship of multiblock copolymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Guilhem P. Baeza
- Univ. Lyon, INSA‐Lyon, CNRS, MATEIS, UMR 5510 Villeurbanne France
| |
Collapse
|
17
|
Deacy A, Gregory GL, Sulley GS, Chen TTD, Williams CK. Sequence Control from Mixtures: Switchable Polymerization Catalysis and Future Materials Applications. J Am Chem Soc 2021; 143:10021-10040. [PMID: 34190553 PMCID: PMC8297863 DOI: 10.1021/jacs.1c03250] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Indexed: 12/24/2022]
Abstract
There is an ever-increasing demand for higher-performing polymeric materials counterbalanced by the need for sustainability throughout the life cycle. Copolymers comprising ester, carbonate, or ether linkages could fulfill some of this demand as their monomer-polymer chemistry is closer to equilibrium, facilitating (bio)degradation and recycling; many monomers are or could be sourced from renewables or waste. Here, an efficient and broadly applicable route to make such copolymers is discussed, a form of switchable polymerization catalysis which exploits a single catalyst, switched between different catalytic cycles, to prepare block sequence selective copolymers from monomer mixtures. This perspective presents the principles of this catalysis, catalyst design criteria, the selectivity and structural copolymer characterization tools, and the properties of the resulting copolymers. Uses as thermoplastic elastomers, toughened plastics, adhesives, and self-assembled nanostructures, and for programmed degradation, among others, are discussed. The state-of-the-art research into both catalysis and products, as well as future challenges and directions, are presented.
Collapse
Affiliation(s)
| | | | - Gregory S. Sulley
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Thomas T. D. Chen
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Charlotte K. Williams
- Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| |
Collapse
|
18
|
Seo Y, Park SY, Lee J, Kim JK, Duan C, Li W. Inverted Cylindrical Microdomains by Blending Star-Shaped and Linear Block Copolymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yeseong Seo
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - So Yeong Park
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Jaeyong Lee
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Jin Kon Kim
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Chao Duan
- Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Weihua Li
- Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
19
|
Li W, Liu YX. Simplicity in mean-field phase behavior of two-component miktoarm star copolymers. J Chem Phys 2021; 154:014903. [PMID: 33412874 DOI: 10.1063/5.0037979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Using self-consistent field theory, we systematically explore the microphase separation in the class of two-component miktoarm star copolymers containing a single conjunction point between different blocks by considering an extended list of candidate microphases. We plot mean-field phase diagrams in the plane of segregation strength and composition for an array of representative star copolymers. Three principal phase diagram topologies, dictated by different phase stabilities, are exposed, displaying a hierarchy in complexity by increasing the molecular asymmetry. Our investigation indicates that the phase diagram topology depends on the ratios of arm numbers and Kuhn segment lengths, which highlights the role of the coordination number ratio between different polymers at the domain interface. These findings reveal the simplicity of the general phase behavior and suggest a complete list of stable microphases for the entire class, which provide useful insight into studying copolymers with more complicated architectures and conformational properties.
Collapse
Affiliation(s)
- Wei Li
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Yi-Xin Liu
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
20
|
Li W. “Bridge” Makes Differences to the Self-assembly of Block Copolymers. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20090438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Chen S, Alcouffe P, Rousseau A, Gérard JF, Lortie F, Zhu J, Bernard J. Design of Semicrystalline Elastomeric Glassy Triblock Copolymers from Oligoamide-Based RAFT Agents. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Senbin Chen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
- Univ Lyon, INSA Lyon, CNRS, IMP UMR 5223, F-69621 Villeurbanne, France
| | - Pierre Alcouffe
- Univ Lyon, INSA Lyon, CNRS, IMP UMR 5223, F-69621 Villeurbanne, France
| | - Alain Rousseau
- Univ Lyon, INSA Lyon, CNRS, IMP UMR 5223, F-69621 Villeurbanne, France
| | | | - Frédéric Lortie
- Univ Lyon, INSA Lyon, CNRS, IMP UMR 5223, F-69621 Villeurbanne, France
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Julien Bernard
- Univ Lyon, INSA Lyon, CNRS, IMP UMR 5223, F-69621 Villeurbanne, France
| |
Collapse
|
22
|
Ji X, Li W. Effect of chain architectures on the domain spacing of block copolymers with equivalent segregation degrees. Phys Chem Chem Phys 2020; 22:17824-17832. [PMID: 32743617 DOI: 10.1039/d0cp02104k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is crucial to lower the domain spacing in the application of directed self-assembly (DSA) of block copolymers. Architectural design of block copolymers provides a possible route. However, the change of the segregation degree is always coupled with that of domain spacing. Therefore, we rescale the segregation degrees of different multiblock copolymers with reference to that of the AB diblock using self-consistent field theory (SCFT), including the [AB]n linear multiblock, AnBn multi-arm star and Ad,nBd,n dendron-like, such that the density profiles of the lamellar morphology are consistent. Then we compare the lamellar periods of these different copolymers under the condition of equivalent segregation degrees. We find that the star and dendron-like architectures can significantly lower the domain spacing relative to that of the AB diblock, especially when the arm number or the generation number is large. On one hand, our work presents a simple criterion for quantifying the reduction of domain spacing of a specific multiblock architecture relative to that of the AB diblock. On the other hand, our conclusion provides a useful guide for the application of directed self-assembly.
Collapse
Affiliation(s)
- Xianwen Ji
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
23
|
Workineh ZG, Pellicane G, Tsige M. Tuning Solvent Quality Induces Morphological Phase Transitions in Miktoarm Star Polymer Films. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Giuseppe Pellicane
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, Università degli Studi di Messina, Via Consolare Valeria 1 (Azienda Ospedaliera Universitaria Policlinico “G.Martino”), 98125 Messina, Italy
- CNR-IPCF, Viale F. Stagno d’Alcontres, 37-98158 Messina, Italy
- School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X01, Scottsville, 3209 Pietermaritzburg, South Africa
| | - Mesfin Tsige
- Department of Polymer Science, University of Akron, Akron, Ohio United States
| |
Collapse
|
24
|
von Tiedemann P, Yan J, Barent RD, Spontak RJ, Floudas G, Frey H, Register RA. Tapered Multiblock Star Copolymers: Synthesis, Selective Hydrogenation, and Properties. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Philipp von Tiedemann
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
- Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany
- Department of Chemical and Biological Engineering, Princeton University, Olden Street, Princeton, 08544 New Jersey, United States
| | - Jiaqi Yan
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, 27695 North Carolina, United States
| | - Ramona D. Barent
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
- Max Planck Graduate Center, Forum Universitatis 2, 55122 Mainz, Germany
| | - Richard J. Spontak
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, 27695 North Carolina, United States
- Department of Materials Science & Engineering, North Carolina State University, Raleigh, 27695 North Carolina, United States
| | - George Floudas
- Department of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Holger Frey
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Richard A. Register
- Department of Chemical and Biological Engineering, Princeton University, Olden Street, Princeton, 08544 New Jersey, United States
| |
Collapse
|
25
|
Abstract
This perspective addresses the development of polymer field theory for predicting the equilibrium phase behavior of block polymer melts. The approach is tailored to the high-molecular-weight limit, where universality reduces all systems to the standard Gaussian chain model, an incompressible melt of elastic threads interacting by contact forces. Using mathematical identities, this particle-based version of the model is converted to an equivalent field-based version that depends on fields rather than particle coordinates. The statistical mechanics of the field-based model is typically solved using the saddle-point approximation of self-consistent field theory (SCFT), which equates to mean field theory, but it can also be evaluated using field theoretic simulations (FTS). While SCFT has matured into one of the most successful theories in soft condensed matter, FTS are still in its infancy. The two main obstacles of FTS are the high computational cost and the occurrence of an ultraviolet divergence, but fortunately there has been recent groundbreaking progress on both fronts. As such, FTS are now well poised to become the method of choice for predicting fluctuation corrections to mean field theory.
Collapse
Affiliation(s)
- M W Matsen
- Department of Chemical Engineering, Department of Physics and Astronomy, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
26
|
Lequieu J, Koeper T, Delaney KT, Fredrickson GH. Extreme Deflection of Phase Boundaries and Chain Bridging in A(BA′)n Miktoarm Star Polymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02254] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Recent advances in thermoplastic elastomers from living polymerizations: Macromolecular architectures and supramolecular chemistry. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.04.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
von Tiedemann P, Maciol K, Preis J, Sajkiewicz P, Frey H. Rapid one-pot synthesis of tapered star copolymers via ultra-fast coupling of polystyryllithium chain ends. Polym Chem 2019. [DOI: 10.1039/c8py01656a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient coupling of sterically demanding polystyryllithium (PS-Li) chain ends is achieved using tetra[3-(chloro-dimethylsilyl)propyl]silane (TCDMSPS) as a linking agent. This general approach is employed for the rapid synthesis of tapered star copolymers.
Collapse
Affiliation(s)
- Philipp von Tiedemann
- Institute of Organic Chemistry
- Johannes Gutenberg University
- 55128 Mainz
- Germany
- Graduate School Materials Science in Mainz
| | - Kamil Maciol
- Institute of Organic Chemistry
- Johannes Gutenberg University
- 55128 Mainz
- Germany
| | - Jasmin Preis
- PSS Polymer Standards Service GmbH
- 55120 Mainz
- Germany
| | - Paweł Sajkiewicz
- Institute of Fundamental Technological Research
- Polish Academy of Sciences
- 02-106 Warsaw
- Poland
| | - Holger Frey
- Institute of Organic Chemistry
- Johannes Gutenberg University
- 55128 Mainz
- Germany
| |
Collapse
|
29
|
Parker AJ, Rottler J. Entropic Network Model for Star Block Copolymer Thermoplastic Elastomers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amanda J. Parker
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
- Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- DATA61 CSIRO, Door 34 Goods Shed, Village St., Docklands, VIC 3008, Australia
| | - Jörg Rottler
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
- Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
30
|
Chen L, Qiang Y, Li W. Tuning Arm Architecture Leads to Unusual Phase Behaviors in a (BAB)5 Star Copolymer Melt. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01484] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lei Chen
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yicheng Qiang
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
31
|
Kim SD, Kim TJ, Kwon SJ, Kim TH, Baek JW, Park HS, Lee HJ, Lee BY. Peroxide-Mediated Alkyl–Alkyl Coupling of Dialkylzinc: A Useful Tool for Synthesis of ABA-Type Olefin Triblock Copolymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sung Dong Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Tae Jin Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Su Jin Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Tae Hee Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Jun Won Baek
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Hee Soo Park
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Hyun Ju Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| | - Bun Yeoul Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, South Korea
| |
Collapse
|
32
|
Seo Y, Jang S, Ahn S, Mishra AK, Kim JK, Lee WB. Phase Behavior of 18-Arm Star-Shaped Polystyrene-block-poly(methyl methacrylate) Copolymers with Different Second Block Initiations. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yeseong Seo
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Sangsin Jang
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Seonghyeon Ahn
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Avnish Kumar Mishra
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Jin Kon Kim
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
33
|
Jiang W, Qiang Y, Li W, Qiu F, Shi AC. Effects of Chain Topology on the Self-Assembly of AB-Type Block Copolymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02389] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Wenbo Jiang
- State
Key Laboratory of Molecular Engineering of Polymers, Key Laboratory
of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yicheng Qiang
- State
Key Laboratory of Molecular Engineering of Polymers, Key Laboratory
of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Weihua Li
- State
Key Laboratory of Molecular Engineering of Polymers, Key Laboratory
of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Feng Qiu
- State
Key Laboratory of Molecular Engineering of Polymers, Key Laboratory
of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - An-Chang Shi
- Department
of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
34
|
Li W, Duan C, Shi AC. Nonclassical Spherical Packing Phases Self-Assembled from AB-Type Block Copolymers. ACS Macro Lett 2017; 6:1257-1262. [PMID: 35650791 DOI: 10.1021/acsmacrolett.7b00756] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Among the various ordered morphologies self-assembled from block copolymers, the spherical packing phases are particularly interesting because they resemble the familiar atomic crystals. The commonly observed spherical morphology of block copolymers is the body-centered-cubic phase. Recently, a number of novel spherical packing phases, i.e., the complex Frank-Kasper phases originally obtained in metallic alloys, have been observed in block copolymer melts. Theoretical studies have revealed that conformational asymmetry of the different blocks provides a key mechanism to stabilize the Frank-Kasper phases. Furthermore, local segregation of different copolymers in blends of diblock copolymers and copolymer architectures provides additional mechanisms to enhance the stability of the complex ordered phases. In this Viewpoint we summarize recent advances in our understanding of the formation of the nonclassical spherical packing phases in AB-type block copolymers, emphasizing the formation mechanisms of these fascinating complex ordered structures.
Collapse
Affiliation(s)
- Weihua Li
- State
Key Laboratory of Molecular Engineering of Polymers, Key Laboratory
of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Chao Duan
- State
Key Laboratory of Molecular Engineering of Polymers, Key Laboratory
of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - An-Chang Shi
- Department
of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
35
|
Jiang W, Qiang Y, Liu M, Li W, Qiu F, Shi AC. Tetragonal phase of cylinders self-assembled from binary blends of AB diblock and (A'B) n star copolymers. Phys Chem Chem Phys 2017; 19:25754-25763. [PMID: 28914309 DOI: 10.1039/c7cp03718j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The phase behavior of binary blends composed of AB diblock and (A'B)n star copolymers is studied using the polymeric self-consistent field theory, focusing on the formation and stability of the stable tetragonal phase of cylinders. In general, cylindrical domains self-assembled from AB-type block copolymers are packed into a hexagonal array, although a tetragonal array of cylinders could be more favourable for lithography applications in microelectronics. The polymer blends are designed such that there is an attractive interaction between the A and A' blocks, which increases the compatibility between the two copolymers and thus suppresses the macroscopic phase separation of the blends. With an appropriate choice of system parameters, a considerable stability window for the targeted tetragonal phase is identified in the blends. Importantly, the transition mechanism between the hexagonal and tetragonal phases is elucidated by examining the distribution of the two types of copolymers in the unit cell of the structure. The results reveal that the short (A'B)n star copolymers are preferentially located in the bonding area connecting two neighboring domains in order to reduce extra stretching, whereas the long AB diblock copolymers are extended to further space of the unit cell.
Collapse
Affiliation(s)
- Wenbo Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | | | | | | | | | | |
Collapse
|